Artificial Adaptive Systems Using Auto Contractive Maps - Paolo Massimo Buscema, Giulia Massini, Marco Breda, Weldon A. Lodwick, Francis Newman, Masoud Asadi-Zeydabadi

Artificial Adaptive Systems Using Auto Contractive Maps

Theory, Applications and Extensions
Buch | Softcover
VII, 179 Seiten
2018 | 1. Softcover reprint of the original 1st ed. 2018
Springer International Publishing (Verlag)
978-3-030-09135-4 (ISBN)
128,39 inkl. MwSt

This book offers an introduction to artificial adaptive systems and a general model of the relationships between the data and algorithms used to analyze them. It subsequently describes artificial neural networks as a subclass of artificial adaptive systems, and reports on the backpropagation algorithm, while also identifying an important connection between supervised and unsupervised artificial neural networks. 

The book's primary focus is on the auto contractive map, an unsupervised artificial neural network employing a fixed point method versus traditional energy minimization. This is a powerful tool for understanding, associating and transforming data, as demonstrated in the numerous examples presented here. A supervised version of the auto contracting map is also introduced as an outstanding method for recognizing digits and defects. In closing, the book walks the readers through the theory and examples of how the auto contracting map can be used in conjunction with another artificial neural network, the "spin-net," as a dynamic form of auto-associative memory.


An Introduction.- Artificial Neural Networks.- Auto-Contractive Maps.- Visualization of Auto-CM Output.- Dataset Transformations and Auto-CM.- Comparison of Auto-CM to Various Other Data Understanding Approaches.

Erscheinungsdatum
Reihe/Serie Studies in Systems, Decision and Control
Zusatzinfo VII, 179 p. 97 illus., 74 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 296 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Logik / Mengenlehre
Technik
Schlagworte Adaptive Algorithms • associative memory • Auto Associative ANNs • Auto-CM Neural Network • Auto-CM Weights Matrix • Content Addressable Memory • Data Driven Machine Learning • Dataset Transformation • Deep learning • Fixed Point Theory • Fuzzy Data Sets • Graph Theoretic Methods • Hybrid Artificial Neural Networks • Spin Network
ISBN-10 3-030-09135-X / 303009135X
ISBN-13 978-3-030-09135-4 / 9783030091354
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90