Numerical Python -  Robert Johansson

Numerical Python (eBook)

Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
eBook Download: PDF
2018 | 2., Second Edition
XXIII, 700 Seiten
Apress (Verlag)
978-1-4842-4246-9 (ISBN)
Systemvoraussetzungen
66,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. 

Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. 

After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning.

What You'll Learn

  • Work with vectors and matrices using NumPy
  • Plot and visualize data with Matplotlib
  • Perform data analysis tasks with Pandas and SciPy
  • Review statistical modeling and machine learning with statsmodels and scikit-learn
  • Optimize Python code using Numba and Cython
Who This Book Is For

Developers who want to understand how to use Python and its related ecosystem for numerical computing. 


Robert Johansson is a numerical Python expert and computational scientist who has worked with SciPy, NumPy and QuTiP, an open-source Python framework for simulating the dynamics of quantum systems.

Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning.What You'll LearnWork with vectors and matrices using NumPyPlot and visualize data with MatplotlibPerform data analysis tasks with Pandas and SciPyReview statistical modeling and machine learning with statsmodels and scikit-learnOptimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its related ecosystem for numerical computing. 

Robert Johansson is a numerical Python expert and computational scientist who has worked with SciPy, NumPy and QuTiP, an open-source Python framework for simulating the dynamics of quantum systems.

Numerical Python1. Introduction to Computing with Python2. Vectors, Matrices and Multidimensional Arrays3. Symbolic Computing4. Plotting and Visualization5. Equation Solving6. Optimization7. Interpolation8. Integration9. Ordinary Differential Equations10. Sparse Matrices and Graphs11. Partial Differential Equations12. Data Processing and Analysis13. Statistics14. Statistical Modeling15. Machine Learning16. Bayesian Statistics17. Signal and Image Processing18. Data Input and Output19. Code Optimization

Erscheint lt. Verlag 24.12.2018
Zusatzinfo XXIII, 700 p. 168 illus., 63 illus. in color.
Verlagsort Berkeley
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Programmiersprachen / -werkzeuge Python
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Informatik Web / Internet
Schlagworte algorithms • Computation • FEniCS • Image Processing • IPython • Jupyter • machine learning • matplotlib • Numerical • NumPy • Python • SciPy • Signal Processing • tensorflow
ISBN-10 1-4842-4246-7 / 1484242467
ISBN-13 978-1-4842-4246-9 / 9781484242469
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 24,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
ein kompakter Einstieg für die Praxis

von Ralph Steyer

eBook Download (2024)
Springer Vieweg (Verlag)
34,99
Arbeiten mit NumPy, Matplotlib und Pandas

von Bernd Klein

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99