Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities (eBook)
XXIX, 195 Seiten
Springer International Publishing (Verlag)
978-3-030-03949-3 (ISBN)
This book introduces three key issues: (i) development of a gradient-free method to enable multi-objective self-optimization; (ii) development of a reinforcement learning strategy to carry out self-learning and finally, (iii) experimental evaluation and validation in two micromachining processes (i.e., micro-milling and micro-drilling). The computational architecture (modular, network and reconfigurable for real-time monitoring and control) takes into account the analysis of different types of sensors, processing strategies and methodologies for extracting behavior patterns from representative process' signals. The reconfiguration capability and portability of this architecture are supported by two major levels: the cognitive level (core) and the executive level (direct data exchange with the process). At the same time, the architecture includes different operating modes that interact with the process to be monitored and/or controlled. The cognitive level includes three fundamental modes such as modeling, optimization and learning, which are necessary for decision-making (in the form of control signals) and for the real-time experimental characterization of complex processes. In the specific case of the micromachining processes, a series of models based on linear regression, nonlinear regression and artificial intelligence techniques were obtained. On the other hand, the executive level has a constant interaction with the process to be monitored and/or controlled. This level receives the configuration and parameterization from the cognitive level to perform the desired monitoring and control tasks.
Introduction.- Modeling Techniques for Micromachining Processes.- Cross Entropy Multi-Objectve Optimization Algorithm.- Artificial Cognitive Architecture Design and Implementation.
Erscheint lt. Verlag | 14.12.2018 |
---|---|
Reihe/Serie | Springer Theses | Springer Theses |
Zusatzinfo | XXIX, 195 p. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik ► Elektrotechnik / Energietechnik | |
Wirtschaft ► Betriebswirtschaft / Management ► Logistik / Produktion | |
Schlagworte | Computational Intelligence Models • Cyber-Physical Systems • Distributed Control Architecture • Expert Systems • Force Signal Processing • Fuzzy controllers • Industrial Use Case • Micromachining Processes • Multi-objective Cross-entropy • predictive models • Q-learning Algorithm • Raspberry Implementation • Roughness Surface Model • Self-adaptive control • Self-decision-making • Self-learning • self-optimization • sensors • vibration analysis |
ISBN-10 | 3-030-03949-8 / 3030039498 |
ISBN-13 | 978-3-030-03949-3 / 9783030039493 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich