Global Differential Geometry and Global Analysis
Springer Berlin (Verlag)
978-3-540-54728-0 (ISBN)
articles and have not been published elsewhere. They meet
the requirements that are necessary for publication in a
good quality primary journal.
E.Belchev, S.Hineva: On the minimal hypersurfaces of a
locally symmetric manifold. -N.Blasic, N.Bokan, P.Gilkey:
The spectral geometry of the Laplacian and the conformal
Laplacian for manifolds with boundary. -J.Bolton,
W.M.Oxbury, L.Vrancken, L.M. Woodward: Minimal immersions of
RP2 into CPn. -W.Cieslak, A. Miernowski, W.Mozgawa: Isoptics
of a strictly convex curve. -F.Dillen, L.Vrancken:
Generalized Cayley surfaces. -A.Ferrandez, O.J.Garay,
P.Lucas: On a certain class of conformally flat Euclidean
hypersurfaces. -P.Gauduchon: Self-dual manifolds with
non-negative Ricci operator. -B.Hajduk: On the obstruction
group toexistence of Riemannian metrics of positive scalar
curvature. -U.Hammenstaedt: Compact manifolds with
1/4-pinched negative curvature. -J.Jost, Xiaowei Peng: The
geometry of moduli spaces of stable vector bundles over
Riemannian surfaces. - O.Kowalski, F.Tricerri: A canonical
connection for locally homogeneous Riemannian manifolds.
-M.Kozlowski: Some improper affine spheres in A3. -R.Kusner:
A maximum principle at infinity and the topology of complete
embedded surfaces with constant mean curvature. -Anmin Li:
Affine completeness and Euclidean completeness. -U.Lumiste:
On submanifolds with parallel higher order fundamental form
in Euclidean spaces. -A.Martinez, F.Milan: Convex affine
surfaces with constant affine mean curvature. -M.Min-Oo,
E.A.Ruh, P.Tondeur: Transversal curvature and tautness for
Riemannian foliations. -S.Montiel, A.Ros: Schroedinger
operators associated to a holomorphic map. -D.Motreanu:
Generic existence of Morse functions on infinite dimensional
Riemannian manifolds and applications. -B.Opozda: Some
extensions of Radon's theorem.
Udo Simon: Research Associate, Islamic Studies, University of Heidelberg
On the minimal hypersurfaces of a locally symmetric manifold.- The spectral geometry of the laplacian and the conformal laplacian for manifolds with boundary.- Minimal immersions of Rp2 into ?pn.- Isoptics of a closed strictly convex curve.- Generalized cayley surfaces.- On a certain class of conformally flat Euclidean hypersurfaces.- Self-dual manifolds with non-negative ricci operator.- On the obstruction group to existence of riemannian metrics of positive scalar curvature.- Compact manifolds with 1/4-pinched negative curvature.- The geometry of moduli spaces of stable vector bundles over riemann surfaces.- A canonical connection for locally homogeneous riemannian manifolds.- Some improper affine spheres in A 3.- A maximum principle at infinity and the topology of complete embedded surfaces with constant mean curvature.- Affine completeness and euclidean completeness.- On Submanifolds with parallel higher order fundamental form in euclidean spaces.- Convex affine surfaces with constant affine mean curvature.- Transversal curvature and tautness for riemannian foliations.- Schrödinger operators associated to a holomorphic map.- Generic existence of morse functions on infinite dimensional riemannian manifolds and applications.- Some extensions of radon's theorem.- Generalized killing spinors with imaginary killing function and conformal killing fields.- On prolongation and invariance algebras in superspace.- On the veronese embedding and related system of differential equations.- Generalizations of harmonic manifolds.- Diffeomorphism groups, pseudodifferential operators and r-matrices.- On the theory of G-webs and G-loops.- Some examples of complete hyperbolic affine 2-spheres in ?3.
Erscheint lt. Verlag | 9.10.1991 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | VIII, 288 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 450 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Curvature • diffeomorphism • Differential Geometry • Global Analysis • Global Differential Geometry • manifold • mean curvature |
ISBN-10 | 3-540-54728-2 / 3540547282 |
ISBN-13 | 978-3-540-54728-0 / 9783540547280 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich