Global Differential Geometry and Global Analysis -

Global Differential Geometry and Global Analysis

Proceedings of a Conference held in Berlin, 15-20 June, 1990
Buch | Softcover
VIII, 288 Seiten
1991 | 1991
Springer Berlin (Verlag)
978-3-540-54728-0 (ISBN)
37,40 inkl. MwSt
All papers appearing in this volume are original research
articles and have not been published elsewhere. They meet
the requirements that are necessary for publication in a
good quality primary journal.
E.Belchev, S.Hineva: On the minimal hypersurfaces of a
locally symmetric manifold. -N.Blasic, N.Bokan, P.Gilkey:
The spectral geometry of the Laplacian and the conformal
Laplacian for manifolds with boundary. -J.Bolton,
W.M.Oxbury, L.Vrancken, L.M. Woodward: Minimal immersions of
RP2 into CPn. -W.Cieslak, A. Miernowski, W.Mozgawa: Isoptics
of a strictly convex curve. -F.Dillen, L.Vrancken:
Generalized Cayley surfaces. -A.Ferrandez, O.J.Garay,
P.Lucas: On a certain class of conformally flat Euclidean
hypersurfaces. -P.Gauduchon: Self-dual manifolds with
non-negative Ricci operator. -B.Hajduk: On the obstruction
group toexistence of Riemannian metrics of positive scalar
curvature. -U.Hammenstaedt: Compact manifolds with
1/4-pinched negative curvature. -J.Jost, Xiaowei Peng: The
geometry of moduli spaces of stable vector bundles over
Riemannian surfaces. - O.Kowalski, F.Tricerri: A canonical
connection for locally homogeneous Riemannian manifolds.
-M.Kozlowski: Some improper affine spheres in A3. -R.Kusner:
A maximum principle at infinity and the topology of complete
embedded surfaces with constant mean curvature. -Anmin Li:
Affine completeness and Euclidean completeness. -U.Lumiste:
On submanifolds with parallel higher order fundamental form
in Euclidean spaces. -A.Martinez, F.Milan: Convex affine
surfaces with constant affine mean curvature. -M.Min-Oo,
E.A.Ruh, P.Tondeur: Transversal curvature and tautness for
Riemannian foliations. -S.Montiel, A.Ros: Schroedinger
operators associated to a holomorphic map. -D.Motreanu:
Generic existence of Morse functions on infinite dimensional
Riemannian manifolds and applications. -B.Opozda: Some
extensions of Radon's theorem.

Udo Simon: Research Associate, Islamic Studies, University of Heidelberg

On the minimal hypersurfaces of a locally symmetric manifold.- The spectral geometry of the laplacian and the conformal laplacian for manifolds with boundary.- Minimal immersions of Rp2 into ?pn.- Isoptics of a closed strictly convex curve.- Generalized cayley surfaces.- On a certain class of conformally flat Euclidean hypersurfaces.- Self-dual manifolds with non-negative ricci operator.- On the obstruction group to existence of riemannian metrics of positive scalar curvature.- Compact manifolds with 1/4-pinched negative curvature.- The geometry of moduli spaces of stable vector bundles over riemann surfaces.- A canonical connection for locally homogeneous riemannian manifolds.- Some improper affine spheres in A 3.- A maximum principle at infinity and the topology of complete embedded surfaces with constant mean curvature.- Affine completeness and euclidean completeness.- On Submanifolds with parallel higher order fundamental form in euclidean spaces.- Convex affine surfaces with constant affine mean curvature.- Transversal curvature and tautness for riemannian foliations.- Schrödinger operators associated to a holomorphic map.- Generic existence of morse functions on infinite dimensional riemannian manifolds and applications.- Some extensions of radon's theorem.- Generalized killing spinors with imaginary killing function and conformal killing fields.- On prolongation and invariance algebras in superspace.- On the veronese embedding and related system of differential equations.- Generalizations of harmonic manifolds.- Diffeomorphism groups, pseudodifferential operators and r-matrices.- On the theory of G-webs and G-loops.- Some examples of complete hyperbolic affine 2-spheres in ?3.

Erscheint lt. Verlag 9.10.1991
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo VIII, 288 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 450 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Curvature • diffeomorphism • Differential Geometry • Global Analysis • Global Differential Geometry • manifold • mean curvature
ISBN-10 3-540-54728-2 / 3540547282
ISBN-13 978-3-540-54728-0 / 9783540547280
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95