Theory and Application of Uniform Experimental Designs - Kai-Tai Fang, Min-Qian Liu, Hong Qin, Yong-Dao Zhou

Theory and Application of Uniform Experimental Designs (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XVI, 300 Seiten
Springer Singapore (Verlag)
978-981-13-2041-5 (ISBN)
Systemvoraussetzungen
80,24 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book provides necessary knowledge for readers interested in developing the theory of uniform experimental design. It discusses measures of uniformity, various construction methods of uniform designs, modeling techniques, design and modeling for experiments with mixtures, and the usefulness of the uniformity in block, factorial and supersaturated designs.

Experimental design is an important branch of statistics with a long history, and is extremely useful in multi-factor experiments. Involving rich methodologies and various designs, it has played a key role in industry, technology, sciences and various other fields. A design that chooses experimental points uniformly scattered on the domain is known as uniform experimental design, and uniform experimental design can be regarded as a fractional factorial design with model uncertainty, a space-filling design for computer experiments, a robust design against the model specification, and a supersaturated design and can be applied to experiments with mixtures.



Kai-Tai Fang is a professor at the BNU-HKBU United International college and is a research professor at the Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China.

Min-Qian Liu is a professor at the Institute of Statistics, Nankai University, Tianjin, China

Hong Qin is a professor at the Faculty of Mathematics and Statistics, Central China Normal

University, Wuhan, China

Yong-Dao Zhou is a professor at the Institute of Statistics, Nankai University, Tianjin, China


The book provides necessary knowledge for readers interested in developing the theory of uniform experimental design. It discusses measures of uniformity, various construction methods of uniform designs, modeling techniques, design and modeling for experiments with mixtures, and the usefulness of the uniformity in block, factorial and supersaturated designs.Experimental design is an important branch of statistics with a long history, and is extremely useful in multi-factor experiments. Involving rich methodologies and various designs, it has played a key role in industry, technology, sciences and various other fields. A design that chooses experimental points uniformly scattered on the domain is known as uniform experimental design, and uniform experimental design can be regarded as a fractional factorial design with model uncertainty, a space-filling design for computer experiments, a robust design against the model specification, and a supersaturated design and can be applied to experiments with mixtures.

Kai-Tai Fang is a professor at the BNU-HKBU United International college and is a research professor at the Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, China. Min-Qian Liu is a professor at the Institute of Statistics, Nankai University, Tianjin, China Hong Qin is a professor at the Faculty of Mathematics and Statistics, Central China Normal University, Wuhan, China Yong-Dao Zhou is a professor at the Institute of Statistics, Nankai University, Tianjin, China

Foreword 6
Preface 9
References 11
Contents 12
1 Introduction 16
1.1 Experiments 16
1.1.1 Examples 17
1.1.2 Experimental Characteristics 20
1.1.3 Type of Experiments 22
1.2 Basic Terminologies Used 24
1.3 Statistical Models 27
1.3.1 Factorial Designs and ANOVA Models 28
1.3.2 Fractional Factorial Designs 31
1.3.3 Linear Regression Models 34
1.3.4 Nonparametric Regression Models 38
1.3.5 Robustness of Regression Models 40
1.4 Word-Length Pattern: Resolution and Minimum Aberration 41
1.4.1 Ordering 41
1.4.2 Defining Relation 42
1.4.3 Word-Length Pattern and Resolution 44
1.4.4 Minimum Aberration Criterion and Its Extension 45
1.5 Implementation of Uniform Designs for Multifactor Experiments 47
1.6 Applications of the Uniform Design 52
References 55
2 Uniformity Criteria 58
2.1 Overall Mean Model 58
2.2 Star Discrepancy 61
2.2.1 Definition 61
2.2.2 Properties 63
2.3 Generalized L2-Discrepancy 67
2.3.1 Definition 68
2.3.2 Centered L2-Discrepancy 69
2.3.3 Wrap-around L2-Discrepancy 71
2.3.4 Some Discussion on CD and WD 72
2.3.5 Mixture Discrepancy 76
2.4 Reproducing Kernel for Discrepancies 79
2.5 Discrepancies for Finite Numbers of Levels 85
2.5.1 Discrete Discrepancy 86
2.5.2 Lee Discrepancy 88
2.6 Lower Bounds of Discrepancies 89
2.6.1 Lower Bounds of the Centered L2-Discrepancy 91
2.6.2 Lower Bounds of the Wrap-around L2-Discrepancy 94
2.6.3 Lower Bounds of Mixture Discrepancy 101
2.6.4 Lower Bounds of Discrete Discrepancy 106
2.6.5 Lower Bounds of Lee Discrepancy 109
References 114
3 Construction of Uniform Designs—Deterministic Methods 116
3.1 Uniform Design Tables 117
3.1.1 Background of Uniform Design Tables 117
3.1.2 One-Factor Uniform Designs 122
3.2 Uniform Designs with Multiple Factors 124
3.2.1 Complexity of the Construction 124
3.2.2 Remarks 125
3.3 Good Lattice Point Method and Its Modifications 130
3.3.1 Good Lattice Point Method 130
3.3.2 The Leave-One-Out glpm 132
3.3.3 Good Lattice Point with Power Generator 136
3.4 The Cutting Method 137
3.5 Linear Level Permutation Method 139
3.6 Combinatorial Construction Methods 144
3.6.1 Connection Between Uniform Designs and Uniformly Resolvable Designs 144
3.6.2 Construction Approaches via Combinatorics 148
3.6.3 Construction Approach via Saturated Orthogonal Arrays 160
3.6.4 Further Results 162
References 167
4 Construction of Uniform Designs—Algorithmic Optimization Methods 170
4.1 Numerical Search for Uniform Designs 170
4.2 Threshold-Accepting Method 173
4.3 Construction Method Based on Quadratic Form 181
4.3.1 Quadratic Forms of Discrepancies 182
4.3.2 Complementary Design Theory 183
4.3.3 Optimal Frequency Vector 187
4.3.4 Integer Programming Problem Method 192
References 195
5 Modeling Techniques 198
5.1 Basis Functions 199
5.1.1 Polynomial Regression Models 199
5.1.2 Spline Basis 203
5.1.3 Wavelets Basis 204
5.1.4 Radial Basis Functions 205
5.1.5 Selection of Variables 206
5.2 Modeling Techniques: Kriging Models 206
5.2.1 Models 207
5.2.2 Estimation 209
5.2.3 Maximum Likelihood Estimation 210
5.2.4 Parametric Empirical Kriging 211
5.2.5 Examples and Discussion 212
5.3 A Case Study on Environmental Data—Model Selection 215
References 222
6 Connections Between Uniformity and Other Design Criteria 224
6.1 Uniformity and Isomorphism 224
6.2 Uniformity and Orthogonality 229
6.3 Uniformity and Confounding 233
6.4 Uniformity and Aberration 236
6.5 Projection Uniformity and Related Criteria 243
6.5.1 Projection Discrepancy Pattern and Related Criteria 243
6.5.2 Uniformity Pattern and Related Criteria 246
6.6 Majorization Framework 247
6.6.1 Based on Pairwise Coincidence Vector 247
6.6.2 Minimum Aberration Majorization 249
References 254
7 Applications of Uniformity in Other Design Types 257
7.1 Uniformity in Block Designs 257
7.1.1 Uniformity in BIBDs 257
7.1.2 Uniformity in PRIBDs 258
7.1.3 Uniformity in POTBs 259
7.2 Uniformity in Supersaturated Designs 261
7.2.1 Uniformity in Two-Level SSDs 262
7.2.2 Uniformity in Mixed-Level SSDs 263
7.3 Uniformity in Sliced Latin Hypercube Designs 264
7.3.1 A Combined Uniformity Measure 265
7.3.2 Optimization Algorithms 266
7.3.3 Determination of the Weight ? 267
7.4 Uniformity Under Errors in the Level Values 269
References 274
8 Uniform Design for Experiments with Mixtures 276
8.1 Introduction to Design with Mixture 276
8.1.1 Some Types of Designs with Mixtures 278
8.1.2 Criteria for Designs with Mixtures 281
8.2 Uniform Designs of Experiments with Mixtures 283
8.2.1 Discrepancy for Designs with Mixtures 283
8.2.2 Construction Methods for Uniform Mixture Design 286
8.2.3 Uniform Design with Restricted Mixtures 289
8.2.4 Uniform Design on Irregular region 293
8.3 Modeling Technique for Designs with Mixtures 298
References 308
Subject Index 309

Erscheint lt. Verlag 2.10.2018
Reihe/Serie Lecture Notes in Statistics
Lecture Notes in Statistics
Zusatzinfo XVI, 300 p. 46 illus., 30 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Block designs • Construction of Uniform Designs • Designs-Deterministic Methods • Deterministic Approach • Experiments with Mixtures • Kriging models • Numerical Optimization Approach • Uniformity
ISBN-10 981-13-2041-1 / 9811320411
ISBN-13 978-981-13-2041-5 / 9789811320415
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich