Beginning Apache Spark 2 - Hien Luu

Beginning Apache Spark 2 (eBook)

With Resilient Distributed Datasets, Spark SQL, Structured Streaming and Spark Machine Learning library

(Autor)

eBook Download: PDF
2018 | 1st ed.
XI, 393 Seiten
Apress (Verlag)
978-1-4842-3579-9 (ISBN)
Systemvoraussetzungen
46,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Develop applications for the big data landscape with Spark and Hadoop. This book also explains the role of Spark in developing scalable machine learning and analytics applications with Cloud technologies. Beginning Apache Spark 2 gives you an introduction to Apache Spark and shows you how to work with it.

Along the way, you'll discover resilient distributed datasets (RDDs); use Spark SQL for structured data; and learn stream processing and build real-time applications with Spark Structured Streaming. Furthermore, you'll learn the fundamentals of Spark ML for machine learning and much more. 

After you read this book, you will have the fundamentals to become proficient in using Apache Spark and know when and how to apply it to your big data applications.  


What You Will Learn  
  • Understand Spark unified data processing platform
  • How to run Spark in Spark Shell or Databricks 
  • Use and manipulate RDDs 
  • Deal with structured data using Spark SQL through its operations and advanced functions
  • Build real-time applications using Spark Structured Streaming
  • Develop intelligent applications with the Spark Machine Learning library

Who This Book Is For

Programmers and developers active in big data, Hadoop, and Java but who are new to the Apache Spark platform.  



Hien Luu has extensive experience in designing and building big data applications and scalable web-based applications. He is particularly passionate about the intersection between big data and machine learning. Hien enjoys working with open source software and has contributed to Apache Pig and Azkaban. Teaching is also one of his passions, and he serves as an instructor at the UCSC Silicon Valley Extension school teaching Apache Spark. He has given presentations at various conferences such a QCon SF, QCon London, Seattle Data Day, Hadoop Summit, and JavaOne.

Develop applications for the big data landscape with Spark and Hadoop. This book also explains the role of Spark in developing scalable machine learning and analytics applications with Cloud technologies. Beginning Apache Spark 2 gives you an introduction to Apache Spark and shows you how to work with it.Along the way, you'll discover resilient distributed datasets (RDDs); use Spark SQL for structured data; and learn stream processing and build real-time applications with Spark Structured Streaming. Furthermore, you'll learn the fundamentals of Spark ML for machine learning and much more. After you read this book, you will have the fundamentals to become proficient in using Apache Spark and know when and how to apply it to your big data applications.  What You Will Learn  Understand Spark unified data processing platformHowto run Spark in Spark Shell or Databricks Use and manipulate RDDs Deal with structured data using Spark SQL through its operations and advanced functionsBuild real-time applications using Spark Structured StreamingDevelop intelligent applications with the Spark Machine Learning libraryWho This Book Is ForProgrammers and developers active in big data, Hadoop, and Java but who are new to the Apache Spark platform.  

Hien Luu has extensive experience in designing and building big data applications and scalable web-based applications. He is particularly passionate about the intersection between big data and machine learning. Hien enjoys working with open source software and has contributed to Apache Pig and Azkaban. Teaching is also one of his passions, and he serves as an instructor at the UCSC Silicon Valley Extension school teaching Apache Spark. He has given presentations at various conferences such a QCon SF, QCon London, Seattle Data Day, Hadoop Summit, and JavaOne.

1. Introduction to Apache Spark2. Working with Apache Spark3. Resilient Distributed Dataset4. Spark SQL - Foundation5. Spark SQL - Advanced6. Spark Streaming7. Spark Streaming Advanced8. Machine Learning with Spark.

Erscheint lt. Verlag 16.8.2018
Zusatzinfo XI, 393 p. 86 illus.
Verlagsort Berkeley
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Informatik Programmiersprachen / -werkzeuge Java
Schlagworte Apache Spark • Big Data • Hadoop • HDFS • MapReduce • No SQL • Scala • Spark • Spark Data Frames
ISBN-10 1-4842-3579-7 / 1484235797
ISBN-13 978-1-4842-3579-9 / 9781484235799
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly (Verlag)
49,90