A Concise Introduction to Machine Learning - A.C. Faul

A Concise Introduction to Machine Learning

(Autor)

Buch | Softcover
334 Seiten
2019
Crc Press Inc (Verlag)
978-0-8153-8410-6 (ISBN)
59,95 inkl. MwSt
Zu diesem Artikel existiert eine Nachauflage
A Concise Introduction to Machine Learning uses mathematics as the common language to explain a variety of machine learning concepts from basic principles, and illustrates every concept using examples in MATLAB.
The emphasis of the book is on the question of Why – only if why an algorithm is successful is understood, can it be properly applied, and the results trusted. Algorithms are often taught side by side without showing the similarities and differences between them. This book addresses the commonalities, and aims to give a thorough and in-depth treatment and develop intuition, while remaining concise.

This useful reference should be an essential on the bookshelves of anyone employing machine learning techniques.

The author's webpage for the book can be accessed here.

A.C. Faul was a Teaching Associate, Fellow and Director of Studies in Mathematics at Selwyn College, University of Cambridge. She came to Cambridge after studying two years in Germany. She did Part II and Part III Mathematics at Churchill College, Cambridge. Since these are only two years, and three years are necessary for a first degree, she does not hold one. However, this was followed by a PhD on the Faul-Powell Algorithm for Radial Basis Function Interpolation under the supervision of Professor Mike Powell. She then worked on the Relevance Vector Machine with Mike Tipping at Microsoft Research Cambridge. Ten years in industry followed where she worked on various algorithms on mobile phone networks, image processing and data visualization. Current projects are on machine learning techniques. In teaching, she enjoys to bring out the underlying, connecting principles of algorithms, which is the emphasis of a book on Numerical Analysis she has written.

Introduction. Probability Theory. Sampling. Linear Classification. Non-Linear Classification. Dimensionality Reduction. Regression. Feature Learning.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Machine Learning & Pattern Recognition
Zusatzinfo 15 Tables, black and white; 123 Illustrations, black and white
Verlagsort Bosa Roca
Sprache englisch
Maße 156 x 234 mm
Gewicht 508 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-8153-8410-6 / 0815384106
ISBN-13 978-0-8153-8410-6 / 9780815384106
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00