Economic Models for Managing Cloud Services - Sajib Mistry, Athman Bouguettaya, Hai Dong

Economic Models for Managing Cloud Services

Buch | Hardcover
XIX, 141 Seiten
2018 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-73875-8 (ISBN)
53,49 inkl. MwSt

The authors introduce both the quantitative and qualitative economic models as optimization tools for the selection of long-term cloud service requests. The economic models fit almost intuitively in the way business is usually done and maximize the profit of a cloud provider for a long-term period.

The authors propose a new multivariate Hidden Markov and Autoregressive Integrated Moving Average (HMM-ARIMA) model to predict various patterns of runtime resource utilization. A heuristic-based Integer Linear Programming (ILP) optimization approach is developed to maximize the runtime resource utilization. It deploys a Dynamic Bayesian Network (DBN) to model the dynamic pricing and long-term operating cost. A new Hybrid Adaptive Genetic Algorithm (HAGA) is proposed that optimizes a non-linear profit function periodically to address the stochastic arrival of requests. Next, the authors explore the Temporal Conditional Preference Network (TempCP-Net) as the qualitative economic model to represent the high-level IaaS business strategies. The temporal qualitative preferences are indexed in a multidimensional k-d tree to efficiently compute the preference ranking at runtime. A three-dimensional Q-learning approach is developed to find an optimal qualitative composition using statistical analysis on historical request patterns.

Finally, the authors propose a new multivariate approach to predict future Quality of Service (QoS) performances of peer service providers to efficiently configure a TempCP-Net. It discusses the experimental results and evaluates the efficiency of the proposed composition framework using Google Cluster data, real-world QoS data, and synthetic data. It also explores the significance of the proposed approach in creating an economically viable and stable cloud market.

This book can be utilized as a useful reference to anyone who is interested in theory, practice, and application of economic models in cloud computing. This book will be an invaluable guide for small and medium entrepreneurs who have invested or plan to invest in cloud infrastructures and services. Overall, this book is suitable for a wide audience that includes students, researchers, and practitioners studying or working in service-oriented computing and cloud computing.   

1 Introduction.- 2 Cloud Service Composition: The State of the Art.- 3 Long-term IaaS Composition for Deterministic Requests.- 4 Long-term IaaS Composition for Stochastic Requests.- 5 Long-term Qualitative IaaS Composition.- 6 Service Providers' Long-term QoS Prediction Model.- 7 Conclusion.

Erscheinungsdatum
Zusatzinfo XIX, 141 p. 53 illus., 12 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 402 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Netzwerke
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Schlagworte Ant colony optimization (ACO) • Cloud Computing • cloud services • Consumer Behavior • dynamic optimization • economic models • evolutionary algorithms • Genetic Algorithm (GA) • Global Optimization • Infrastructure as a Service (IaaS) • Long-term Service Composition • machine learning • Multivariate Time-series analysis • Prediction models • Profit Maximization • Q-Learning • qualitative models • Quantitative Models • Statistical Distribution Analysis • Temporal CP-Nets
ISBN-10 3-319-73875-5 / 3319738755
ISBN-13 978-3-319-73875-8 / 9783319738758
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Grundkurs für Ausbildung und Praxis

von Ralf Adams

Buch (2023)
Carl Hanser (Verlag)
29,99
Einführung in die Praxis der Datenbankentwicklung für Ausbildung, …

von René Steiner

Buch | Softcover (2021)
Springer Fachmedien Wiesbaden GmbH (Verlag)
49,99