Modern Problems of Stochastic Analysis and Statistics (eBook)

Selected Contributions In Honor of Valentin Konakov

Vladimir Panov (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2017
XII, 511 Seiten
Springer International Publishing (Verlag)
978-3-319-65313-6 (ISBN)

Lese- und Medienproben

Modern Problems of Stochastic Analysis and Statistics -
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book brings together the latest findings in the area of stochastic analysis and statistics. The individual chapters cover a wide range of topics from limit theorems, Markov processes, nonparametric methods, acturial science, population dynamics, and many others. The volume is dedicated to Valentin Konakov, head of the International Laboratory of Stochastic Analysis and its Applications on the occasion of his 70th birthday. Contributions were prepared by the participants of the international conference of the international conference 'Modern problems of stochastic analysis and statistics', held at the Higher School of Economics in Moscow from May 29 - June 2, 2016. It offers a valuable reference resource for researchers and graduate students interested in modern stochastics.



Vladimir Panov is an assistant professor at the National Research University - Higher School of Economics (Moscow).  He graduated from the Moscow State University, and completed his PhD at the Humboldt University in Berlin. During his PhD and postdoctoral studies, he worked on various projects within the Collaborative Research Centres (SFB) on economic risks and statistical modelling of nonlinear dynamic processes.  He was a research assistant at the Weierstrass Institute for Applied Analysis and Stochastics in Berlin (2008-2011), and later a postdoc at the University of Duisburg-Essen (2011-2013). His current research interests are primarily in the field of statistical inference for stochastic processes and Levy-based models.

Vladimir Panov is an assistant professor at the National Research University - Higher School of Economics (Moscow).  He graduated from the Moscow State University, and completed his PhD at the Humboldt University in Berlin. During his PhD and postdoctoral studies, he worked on various projects within the Collaborative Research Centres (SFB) on economic risks and statistical modelling of nonlinear dynamic processes.  He was a research assistant at the Weierstrass Institute for Applied Analysis and Stochastics in Berlin (2008-2011), and later a postdoc at the University of Duisburg-Essen (2011-2013). His current research interests are primarily in the field of statistical inference for stochastic processes and Levy-based models.

0. Preface.- List of contributors.- 1. Youri Davydov, Valentin Konakov, Roberto Garra and Enzo Orsingher: Random motions.- 2. Aurélien Alfonsi, Masafumi Hayashi, Arturo Kohatsu-Higa, Gennaro Cibelli and Sergio Polidoro: Parametrix and heat kernel estimates.- 3. Ion Grama and Emile Le Page: Local limit theorems.- 4. Denis Belomestny, Stefan Häfner, Mikhail Urusov, Alexander Gushchin and Esko Valkeila: Approximation of stochastic processes.- 5. Alexandre Richard, Denis Talay, Yuliya Mishura and Kostiantyn Ralchenko: Fractional Brownian motion.- 6. Alexander Lykov, Vadim Malyshev, Bernard Derrida and Zhan Shi: Particle systems.- 7. Pierre Bellec, Alexandre Tsybakov and Enno Mammen: Statistics.- 8. Ekaterina Bulinskaya: Acturial science.- 9. Dan Han, Stanislav Molchanov, Joseph Whitmeyer: Population dynamics.- 10. Alexander Veretennikov: Ergodic Markov processes.

Erscheint lt. Verlag 21.11.2017
Reihe/Serie Springer Proceedings in Mathematics & Statistics
Springer Proceedings in Mathematics & Statistics
Zusatzinfo XII, 511 p. 15 illus., 8 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Schlagworte limit theorems • Markov Processes • nonparametric inference • population dynamics • random flight models • stochastic analysis
ISBN-10 3-319-65313-X / 331965313X
ISBN-13 978-3-319-65313-6 / 9783319653136
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
24,99