A Discrete Hilbert Transform with Circle Packings
Seiten
2017
|
1st ed. 2017
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-20456-3 (ISBN)
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-20456-3 (ISBN)
Dominik Volland studies the construction of a discrete counterpart to the Hilbert transform in the realm of a nonlinear discrete complex analysis given by circle packings. The Hilbert transform is closely related to Riemann-Hilbert problems which have been studied in the framework of circle packings by E. Wegert and co-workers since 2009. The author demonstrates that the discrete Hilbert transform is well-defined in this framework by proving a conjecture on discrete problems formulated by Wegert. Moreover, he illustrates its properties by carefully chosen numerical examples.
Dominik Volland currently attends his postgraduate studies in the master's program on computational science and engineering at the Technical University of Munich (TUM).
Hardy Spaces and Riemann-Hilbert Problems.- The Hilbert Transform in the Classical Setting.- Circle Packings.- Discrete Boundary Value Problems.- Discrete Hilbert Transform.- Numerical Results of Test Computations.- Properties of the Discrete Transform.
Erscheinungsdatum | 22.12.2017 |
---|---|
Reihe/Serie | BestMasters |
Zusatzinfo | XI, 102 p. 27 illus., 10 illus. in color. |
Verlagsort | Wiesbaden |
Sprache | englisch |
Maße | 148 x 210 mm |
Gewicht | 161 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Boundary value problem • circle packings • discrete analytic functions • discrete complex analysis • Hilbert transform • Riemann-Hilbert problem |
ISBN-10 | 3-658-20456-7 / 3658204567 |
ISBN-13 | 978-3-658-20456-3 / 9783658204563 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €