Elliptically Contoured Models in Statistics
Springer (Verlag)
978-0-7923-2115-6 (ISBN)
1. Preliminaries.- 1.1 Introduction and Literature Review.- 1.2 Notations.- 1.3 Some Results from Matrix Algebra.- 1.4 A Functional Equation.- 2. Basic Properties.- 2.1 Definition.- 2.2 Probability Density Function.- 2.3 Marginal Distributions.- 2.4 Expected Value and Covariance.- 2.5 Stochastic Representation.- 2.6 Conditional Distributions.- 2.7 Examples.- 3. Probability Density Function and Expectedvalues.- 3.1 Probability Density Function.- 3.2 More on Expected Values.- 4. Mixture of Normal Distributions.- 4.1 Mixture by Distribution Functions.- 4.2 Mixture by Weighting Functions.- 5. Quadratic Forms and other Functions of Elliptically Contoured Matrices.- 5.1 Cochran’ s Theorem.- 5.2 Rank of Quadratic Forms.- 5.3 Distribution of Invariant Matrix Variate Functions.- 6. Characterization Results.- 6.1 Characterizations Based on Invariance.- 6.2 Characterizations of Normality.- 7. Estimation.- 7.1 Maximum Likelihood Estimators of the Parameters.- 7.2 Properties of the Estimators.- 8. Hypothesis Testing.- 8.1 General Results.- 8.2 Two Models.- 8.3 Testing Criteria.- 9. Linear Models.- 9.1 Estimation of the Parameters in the Multivariate Linear Regression Model.- 9.2 Hypothesis Testing in the Multivariate Linear Regression Model.- 9.3 Inference in the Random Effects Model.- References.- Author Index.
Reihe/Serie | Mathematics and Its Applications ; 240 | Mathematics and Its Applications ; 240 |
---|---|
Zusatzinfo | X, 327 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-7923-2115-4 / 0792321154 |
ISBN-13 | 978-0-7923-2115-6 / 9780792321156 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich