Geometry of Complex Numbers (eBook)
224 Seiten
Dover Publications (Verlag)
978-0-486-13586-1 (ISBN)
"e;This book should be in every library, and every expert in classical function theory should be familiar with this material. The author has performed a distinct service by making this material so conveniently accessible in a single book."e; — Mathematical ReviewSince its initial publication in 1962, Professor Schwerdtfeger's illuminating book has been widely praised for generating a deeper understanding of the geometrical theory of analytic functions as well as of the connections between different branches of geometry. Its focus lies in the intersection of geometry, analysis, and algebra, with the exposition generally taking place on a moderately advanced level. Much emphasis, however, has been given to the careful exposition of details and to the development of an adequate algebraic technique.In three broad chapters, the author clearly and elegantly approaches his subject. The first chapter, Analytic Geometry of Circles, treats such topics as representation of circles by Hermitian matrices, inversion, stereographic projection, and the cross ratio. The second chapter considers in depth the Moebius transformation: its elementary properties, real one-dimensional projectivities, similarity and classification of various kinds, anti-homographies, iteration, and geometrical characterization. The final chapter, Two-Dimensional Non-Euclidean Geometries, discusses subgroups of Moebius transformations, the geometry of a transformation group, hyperbolic geometry, and spherical and elliptic geometry. For this Dover edition, Professor Schwerdtfeger has added four new appendices and a supplementary bibliography.Advanced undergraduates who possess a working knowledge of the algebra of complex numbers and of the elements of analytical geometry and linear algebra will greatly profit from reading this book. It will also prove a stimulating and thought-provoking book to mathematics professors and teachers.
INTRODUCTION: NOTE ON TERMINOLOGY AND NOTATIONSCHAPTER I. ANALYTIC GEOMETRY OF CIRCLES§ 1. Representation of Circles by Hermitian Matrices a. One circle b. Two circles c. Pencils of circles Examples§ 2. The Inversion a. Definition b. Simple properties of the inversion Examples§ 3. Stereographic Projection a. Definition b. Simple properties of the stereographic projection c. Stereographic projection and polarity Examples§ 4. Pencils and Bundles of Circles a. Pencils of circles b. Bundles of circles Examples§ 5. The Cross Ratio a. The simple ratio b. The double ratio or cross ratio c. The cross ratio in circle geometry ExamplesCHAPTER II. THE MOEBIUS TRANSFORMATION§ 6. Definition: Elementary Properties a. Definition and notation b. The group of all Moebius transformations c. Simple types of Moebius transformations d. Mapping properties of the Moebius transformations e. Transformation of a circle f. Involutions Examples§ 7. Real One-dimensional Projectivities a. Perpectivities b. Projectivities c. Line-circle perspectivity Examples§ 8. Similarity and Classification of Moebius Transformations a. Introduction of a new variable b. Normal forms of Moebius transformations c. "Hyperbolic, elliptic, loxodromic transformations" d. The subgroup of the real Moebius transformations e. The characteristic parallelogram Examples§ 9. Classification of Anti-homographies a. Anti-homographies b. Anti-involutions c. Normal forms of non-involutory anti-homographies d. Normal forms of circle matrices and anti-involutions e. Moebius transformations and anti-homographies as products of inversions f. The groups of a pencil Examples§ 10. Iteration of a Moebius Transformation a. General remarks on iteration b. Iteration of a Moebius transformation c. Periodic sequences of Moebius transformations d. Moebius transformations with periodic iteration e. Continuous iteration f. Continuous iteration of a Moebius transformation Examples§ 11. Geometrical Characterization of the Moebius Transformation a. The fundamental theorem b. Complex projective transformations c. Representation in space ExamplesCHAPTER III. TWO-DIMENSIONAL NON-EUCLIDEAN GEOMETRIES§ 12. Subgroups of Moebius Transformations a. The group U of the unit circle b. The group R of rotational Moebius transformations c. Normal forms of bundles of circles d. The bundle groups e. Transitivity of the bundle groups Examples§ 13. The Geometry of a Transformation Group a. Euclidean geometry b. G-geometry c. Distance function d. G-circles Examples§ 14. Hyperbolic Geometry a. Hyperbolic straight lines and distance b. The triangle inequality c. Hyperbolic circles and cycles d. Hyperbolic trigonometry e. Applications Examples§ 15. Spherical and Elliptic Geometry a. Spherical straight lines and distance b. Additivity and triangle inequality c. Spherical circles d. Elliptic geometry e. Spherical trigonometry ExamplesAPPENDICES1. Uniqueness of the cross ratio2. A theorem of H. Haruki3. Applications of the characteristic parallelogram4. Complex Numbers in Geometry by I. M. YaglomBIBLIOGRAPHYSUPPLEMENTARY BIBLIOGRAPHYINDEX
Erscheint lt. Verlag | 23.5.2012 |
---|---|
Reihe/Serie | Dover Books on Mathematics |
Sprache | englisch |
Maße | 140 x 140 mm |
Gewicht | 240 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
ISBN-10 | 0-486-13586-1 / 0486135861 |
ISBN-13 | 978-0-486-13586-1 / 9780486135861 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich