Introduction to Linear Algebra and Tensors (eBook)
192 Seiten
Dover Publications (Verlag)
978-0-486-14878-6 (ISBN)
The present book, a valuable addition to the English-language literature on linear algebra and tensors, constitutes a lucid, eminently readable and completely elementary introduction to this field of mathematics. A special merit of the book is its free use of tensor notation, in particular the Einstein summation convention. The treatment is virtually self-contained. In fact, the mathematical background assumed on the part of the reader hardly exceeds a smattering of calculus and a casual acquaintance with determinants.The authors begin with linear spaces, starting with basic concepts and ending with topics in analytic geometry. They then treat multilinear forms and tensors (linear and bilinear forms, general definition of a tensor, algebraic operations on tensors, symmetric and antisymmetric tensors, etc.), and linear transformation (again basic concepts, the matrix and multiplication of linear transformations, inverse transformations and matrices, groups and subgroups, etc.). The last chapter deals with further topics in the field: eigenvectors and eigenvalues, matrix ploynomials and the Hamilton-Cayley theorem, reduction of a quadratic form to canonical form, representation of a nonsingular transformation, and more. Each individual section — there are 25 in all — contains a problem set, making a total of over 250 problems, all carefully selected and matched. Hints and answers to most of the problems can be found at the end of the book.Dr. Silverman has revised the text and numerous pedagogical and mathematical improvements, and restyled the language so that it is even more readable. With its clear exposition, many relevant and interesting problems, ample illustrations, index and bibliography, this book will be useful in the classroom or for self-study as an excellent introduction to the important subjects of linear algebra and tensors.
Editor's PrefaceChapter 1. Linear Spaces 1. Basic Concepts 2. Linear Dependence 3. Dimension and Bases 4. Orthonormal Bases. The Scalar Product 5. The Vector Product. Triple Products 6. Basis Transformations. Tensor Calculus 7. Topics in Analytic GeometryChapter 2. Multilinear Forms and Tensors 8. Linear Forms 9. Bilinear Forms 10. Multilinear Forms. General Definition of a Tensor 11. Algebraic Operations on Tensors 12. Symmetric and Antisymmetric TensorsChapter 3. Linear Transformations 13. Basic Concepts 14. The Matrix of a Linear Transformation and Its Determinant 15. Linear Transformations and Bilinear Forms 16. Multiplication of Linear Transformations and Matrices 17. Inverse Transformations and Matrices 18. The Group of Linear Transformations and Its SubgroupsChapter 4. Further Topics 19. Eigenvectors and Eigenvalues 20. The Case of Distinct Eigenvalues 21. Matrix Polynomials and the Hamilton-Cayley Theorem 22. Eigenvectors of a Symmetric Transformation 23. Diagonalization of a Symmetric Transformation 24. Reduction of a Quadratic Form to Canonical Form 25. Representation of a Nonsingular Transformation Selected Hints and Answers; Bibliography; Index
Erscheint lt. Verlag | 25.7.2012 |
---|---|
Reihe/Serie | Dover Books on Mathematics |
Übersetzer | Richard A. Silverman |
Sprache | englisch |
Maße | 140 x 140 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | Algebra • algebraic operations on tensors • analytic geometry • Basic concept • Calculus • determinants • einstein summation convention • elementary introduction • experiments • general definition of a tensor • hamilton cayley theorem • Illustrations • linear algebra • linear and bilinear forms • Linear Spaces • Math • mathematical background • Mathematics • matrix polynomials • multilinear forms • Physics • quadratic form • Science • science and math • symmetric and antisymmetric tensors • Tensor Notation • Tensors |
ISBN-10 | 0-486-14878-5 / 0486148785 |
ISBN-13 | 978-0-486-14878-6 / 9780486148786 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich