History of the Calculus and Its Conceptual Development (eBook)

eBook Download: EPUB
2012
368 Seiten
Dover Publications (Verlag)
978-0-486-17538-6 (ISBN)

Lese- und Medienproben

History of the Calculus and Its Conceptual Development -  Carl B. Boyer
Systemvoraussetzungen
20,42 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Fluent description of the development of both the integral and differential calculus — its early beginnings in antiquity, medieval contributions, and a consideration of Newton and Leibniz.
This book, for the first time, provides laymen and mathematicians alike with a detailed picture of the historical development of one of the most momentous achievements of the human intellect ― the calculus. It describes with accuracy and perspective the long development of both the integral and the differential calculus from their early beginnings in antiquity to their final emancipation in the 19th century from both physical and metaphysical ideas alike and their final elaboration as mathematical abstractions, as we know them today, defined in terms of formal logic by means of the idea of a limit of an infinite sequence.But while the importance of the calculus and mathematical analysis ― the core of modern mathematics ― cannot be overemphasized, the value of this first comprehensive critical history of the calculus goes far beyond the subject matter. This book will fully counteract the impression of laymen, and of many mathematicians, that the great achievements of mathematics were formulated from the beginning in final form. It will give readers a sense of mathematics not as a technique, but as a habit of mind, and serve to bridge the gap between the sciences and the humanities. It will also make abundantly clear the modern understanding of mathematics by showing in detail how the concepts of the calculus gradually changed from the Greek view of the reality and immanence of mathematics to the revised concept of mathematical rigor developed by the great 19th century mathematicians, which held that any premises were valid so long as they were consistent with one another. It will make clear the ideas contributed by Zeno, Plato, Pythagoras, Eudoxus, the Arabic and Scholastic mathematicians, Newton, Leibnitz, Taylor, Descartes, Euler, Lagrange, Cantor, Weierstrass, and many others in the long passage from the Greek "e;method of exhaustion"e; and Zeno's paradoxes to the modern concept of the limit independent of sense experience; and illuminate not only the methods of mathematical discovery, but the foundations of mathematical thought as well.

I. INTRODUCTIONII. CONCEPTIONS IN ANTIQUITYIII. MEDIEVAL CONTRIBUTIONSIV. A CENTURY OF ANTICIPATIONV. NEWTON AND LEIBNIZVI. THE PERIOD OF INDECISIONVII. THE RIGOROUS FORMULATIONVIII. CONCLUSION BIBLIOGRAPHY INDEX

Erscheint lt. Verlag 9.10.2012
Reihe/Serie Dover Books on Mathematics
Dover Books on Mathematics
Sprache englisch
Maße 140 x 140 mm
Gewicht 399 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Geschichte der Mathematik
Schlagworte arbitrarily • Archimedes • Barrow • books on archimedes • books on barrow • books on cantors • books on cauchies • books on cavalieri • books on contributions • books on dedekinds • books on descartes • books on dovers • books on epsilon-deltas • books on euler • books on exhaustions • books on fermat • books on first-orders • books on fleas • books on formalisms • books on formulations • books on foundations • books on hindus • books on infinites • books on infinitesimals • books on infinities • books on kepler • books on lagrange • books on laymen • books on limits • books on magnitudes • books on murdoch • books on newton • books on notations • books on omnia • books on philosophical developments • books on precursors • books on pythagoras • books on second-orders • books on transmitters • books on weierstrasses • books on zenos • Cantor • Cauchy • cavalieri • completed • Contributions • Dedekind • Descartes • Dover • epsilon-delta • Euler • Exhaustion • Fermat • First-Order • fleas • Formalism • Formulation • Foundations • Geometric • Hindu • Infinite • infinitesimals • infinity • Katz • Kepler • Lagrange • Laymen • Leibnitz • leibniz • Limit • magnitudes • Mathematical • mathematics history • murdoch • Newton • Notation • Omnia • philosophical development • Precursors • Pythagoras • Rigorous • Scholastic • second-order • Transmitters • Weierstrass • Zeno
ISBN-10 0-486-17538-3 / 0486175383
ISBN-13 978-0-486-17538-6 / 9780486175386
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich