Topology Optimization Theory for Laminar Flow - Yongbo Deng, Yihui Wu, Zhenyu Liu

Topology Optimization Theory for Laminar Flow (eBook)

Applications in Inverse Design of Microfluidics
eBook Download: PDF
2017 | 1st ed. 2018
XI, 250 Seiten
Springer Singapore (Verlag)
978-981-10-4687-2 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary.

Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.




Yongbo Deng received the Ph.D. degree in mechanical engineering from University of Chinese Academy of Sciences, in June of 2012. From July of 2012, he began his Assistant Professor position, in State Key Laboratory of Applied Optics (SKLAO), Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences. In September of 2014, he derived his Associate Professor position in the same laboratory. During this period, he ever worked in IMTEK, University of Freiburg, for his research collaboration on electromagnetic metamaterial. In May of 2016, he derived the Guest Professor Fellowship from Karlsruhe Institute of Technology (KIT) for his outstanding research on topology optimization-based inverse design methodology. His research interests are topology optimization-based inverse design method with applications in the areas of microfluidics and photonics, and the fabrication processes of MEMS devices.

Area of work:

Simulation and optimiza

tion in hydrodynamics and mechanics

Partial differential equation constrained optimization problem and inverse problem, especially topology optimization, shape optimization and optimal control methods, design and manufacture of MEMS devices, especially the microstructure, microfluidics and photonic devices

Finite element method (Galerkin finite element, mixed finite element, multiscale finite element, vector finite element)

 

Yihui Wu received her PhD degree from Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences (CAS) in 1996. She has been a professor of CIOMP since 1999 and now she is a distinguished professor of CAS. She is the group leader of Micro/Nano research in CIOMP. Her research interests are high speed flywheel, spectrometer, Lab-on-a-chip and label-free photonic/phononic biosensors and super resolution imaging.

 

Zhenyu Liu  received the Ph.D. degree in mechanical engineering from Dalian University of Technology, Dalian, China, in 2000, and Habilitation and Privatdozent from Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany in 2009. From 2000 to 2009, he was a research assistant and a group leader in the Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany. Since 2009, he has served for Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China. His research interests are the simulation and optimization of devices in MEMS.

 


This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary. Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.

Yongbo Deng received the Ph.D. degree in mechanical engineering from University of Chinese Academy of Sciences, in June of 2012. From July of 2012, he began his Assistant Professor position, in State Key Laboratory of Applied Optics (SKLAO), Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences. In September of 2014, he derived his Associate Professor position in the same laboratory. During this period, he ever worked in IMTEK, University of Freiburg, for his research collaboration on electromagnetic metamaterial. In May of 2016, he derived the Guest Professor Fellowship from Karlsruhe Institute of Technology (KIT) for his outstanding research on topology optimization-based inverse design methodology. His research interests are topology optimization-based inverse design method with applications in the areas of microfluidics and photonics, and the fabrication processes of MEMS devices. Area of work: Simulation and optimization in hydrodynamics and mechanics Partial differential equation constrained optimization problem and inverse problem, especially topology optimization, shape optimization and optimal control methods, design and manufacture of MEMS devices, especially the microstructure, microfluidics and photonic devices Finite element method (Galerkin finite element, mixed finite element, multiscale finite element, vector finite element)   Yihui Wu received her PhD degree from Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences (CAS) in 1996. She has been a professor of CIOMP since 1999 and now she is a distinguished professor of CAS. She is the group leader of Micro/Nano research in CIOMP. Her research interests are high speed flywheel, spectrometer, Lab-on-a-chip and label-free photonic/phononic biosensors and super resolution imaging.   Zhenyu Liu  received the Ph.D. degree in mechanical engineering from Dalian University of Technology, Dalian, China, in 2000, and Habilitation and Privatdozent from Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany in 2009. From 2000 to 2009, he was a research assistant and a group leader in the Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany. Since 2009, he has served for Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China. His research interests are the simulation and optimization of devices in MEMS.  

Erscheint lt. Verlag 27.9.2017
Zusatzinfo XI, 250 p. 181 illus., 97 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte adjoint method • Density method • Inverse design • Level set method • Microfluidic channel
ISBN-10 981-10-4687-5 / 9811046875
ISBN-13 978-981-10-4687-2 / 9789811046872
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
94,95
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99