Practical Concurrent Haskell (eBook)
XV, 266 Seiten
Apress (Verlag)
978-1-4842-2781-7 (ISBN)
- Program with Haskell
- Harness concurrency to Haskell
- Apply Haskell to big data and cloud computing applications
- Use Haskell concurrency design patterns in big data
- Accomplish iterative data processing on big data using Haskell
- Use MapReduce and work with Haskell on large clusters
Learn to use the APIs and frameworks for parallel and concurrent applications in Haskell. This book will show you how to exploit multicore processors with the help of parallelism in order to increase the performance of your applications. Practical Concurrent Haskell teaches you how concurrency enables you to write programs using threads for multiple interactions. After accomplishing this, you will be ready to make your move into application development and portability with applications in cloud computing and big data. You'll use MapReduce and other, similar big data tools as part of your Haskell big data applications development. What You'll LearnProgram with HaskellHarness concurrency to HaskellApply Haskell to big data and cloud computing applicationsUse Haskell concurrency design patterns in big dataAccomplish iterative data processing on big data using HaskellUse MapReduce and work with Haskell on large clustersWho This Book Is ForThose with at least some prior experience with Haskell and some prior experience with big data in another programming language such as Java, C#, Python, or C++.
Stefania Loredana Nita holds two B.Sc., one in Mathematics (2013) and one in Computer Science (2016) from the University of Bucharest, Faculty of Mathematics and Computer Science; she received her M.Sc. in Software Engineering (2016) from University of Bucharest, faculty of Mathematics and Computer Science. She has worked as developer for an insurance company (Gothaer Insurance), and as a teacher of Mathematics and Computer Science in private centers of educations. Currently, she is Ph.D. student in Computer Science (from 2016) at Faculty of Mathematics and Computer Science from University of Bucharest. Also, she is teaching assistant at the same university and works since 2015 as researcher and developer at Institute for Computers, Bucharest, Romania. Her domains of interest are cryptography applied in cloud computing and big data, parallel computing and distributed systems, software engineering.Marius Mihailescu received his B.Sc. in Science and Information Technology (2008) and B.Eng. in Computer Engineering (2009) from the University of Southern Denmark; he holds two M.Sc., one in Software Engineering (2010) from the University of Bucharest and the second one in Information Security Technology (2011) from the Military Technical Academy. His Ph.D. is in Computer Science (2015) from the University of Bucharest, Romania with a thesis on security of biometrics authentication protocols. From 2005 to 2011 he worked as a software developer and researcher for different well-known companies (Softwin, NetBridge Investments, Declic) from Bucharest, Romania (software and web development, business analysis, parallel computing, cryptography researching, distributed systems). Starting in 2012 until 2015 he has been an assistant in the Informatics department, University of Titu Maiorescu and Computer Science department, University of Bucharest. Since 2015, he is a lecturer at the University of South-East Lumina.
PART 1 – HASKELL FOUNDATIONS. GENERAL INTRODUCTORY NOTIONSChapter 1. IntroductionChapter 2. Programming with HaskellChapter 3. Parallelism and Concurrent with HaskellChapter 4. Strategies used in Evaluation ProcessChapter 5. Exceptions for Input/OutputChapter 6. CancellationChapter 7. Transactional Memory Case StudiesChapter 8. Debugging Techniques for Big DataPART 2 – HASKELL FOR BIG DATA AND CLOUD COMPUTINGChapter 9. Towards Haskell in CloudChapter 10. Towards Haskell in Big DataChapter 11. Concurrency Design PatternsChapter 12. Large-scale Design in HaskellChapter 13. Designing Shared Memory Approach for Hadoop Streaming PerformanceChapter 14. Interactive Debugger for Development and Portability Applications based on Big DataChapter 15. Iterative Data Processing on Big DataChapter 16. MapReduceChapter 17. Big Data and Large Clusters
Erscheint lt. Verlag | 14.9.2017 |
---|---|
Zusatzinfo | XV, 266 p. 26 illus., 19 illus. in color. |
Verlagsort | Berkeley |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Schlagworte | Big Data • cloud applications • Concurrency • concurrent • Haskell • language • Parallel • Practical • programming • Threads |
ISBN-10 | 1-4842-2781-6 / 1484227816 |
ISBN-13 | 978-1-4842-2781-7 / 9781484227817 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich