PySpark Recipes - Raju Kumar Mishra

PySpark Recipes

A Problem-Solution Approach with PySpark2
Buch | Softcover
265 Seiten
2017 | 1st ed.
Apress (Verlag)
978-1-4842-3140-1 (ISBN)
53,49 inkl. MwSt
Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved!
PySpark Recipes covers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model.

What You Will Learn  

Understand the advanced features of PySpark2 and SparkSQL

Optimize your code

Program SparkSQL with Python

Use Spark Streaming and Spark MLlib with Python

Perform graph analysis with GraphFrames


Who This Book Is For
Data analysts, Python programmers, big data enthusiasts

Raju Mishra has strong interests in data science and systems that have the capability of handling large amounts of data and operating complex mathematical models through computational programming. He was inspired to pursue an M. Tech in computational sciences from Indian Institute of Science in Bangalore, India. Raju primarily works in the areas of data science and its different applications. Working as a corporate trainer he has developed unique insights that help him in teaching and explaining complex ideas with ease. Raju is also a data science consultant solving complex industrial problems. He works on programming tools such as R, Python, scikit-learn, Statsmodels, Hadoop, Hive, Pig, Spark, and many others.

Chapter 1: The Era of Big Data, Hadoop, and Other Big Data Processing Frameworks.- Chapter 2: Installation.- Chapter 3: Introduction to Python and NumPy.- Chapter 4: Spark Architecture and Resilient Distributed Dataset.- Chapter 5: The Power of Pairs: Paired RDD.- Chapter 6: IO in PySpark.- Chapter 7: Optimizing PySpark and PySpark Streaming.- Chapter 8: PySparkSQL.- Chapter 9:  PySpark MLlib and Linear Regression.

Erscheinungsdatum
Zusatzinfo 12 Illustrations, color; 35 Illustrations, black and white; XXIII, 265 p. 47 illus., 12 illus. in color.
Verlagsort Berkley
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Schlagworte Advanced PySpark • Big Data • MLLIb • NumPy • PySpark2 • Python • Resilient Distributed Database • SciPy • Spark • Spark SQL
ISBN-10 1-4842-3140-6 / 1484231406
ISBN-13 978-1-4842-3140-1 / 9781484231401
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90