Multimodal Analysis of User-Generated Multimedia Content (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XXII, 263 Seiten
Springer International Publishing (Verlag)
978-3-319-61807-4 (ISBN)

Lese- und Medienproben

Multimodal Analysis of User-Generated Multimedia Content - Rajiv Shah, Roger Zimmermann
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents a summary of the multimodal analysis of user-generated multimedia content (UGC). Several multimedia systems and their proposed frameworks are also discussed. First, improved tag recommendation and ranking systems for social media photos, leveraging both content and contextual information, are presented. Next, we discuss the challenges in determining semantics and sentics information from UGC to obtain multimedia summaries. Subsequently, we present a personalized music video generation system for outdoor user-generated videos. Finally, we discuss approaches for multimodal lecture video segmentation techniques. This book also explores the extension of these multimedia system with the use of heterogeneous continuous streams.

Rajiv Ratn Shah received his B.Sc. with honors in Mathematics from Banaras Hindu University, India in 2005. He received his M.Tech. in Computer Technology and Applications from Delhi Technological University, India in 2010. Prior joining Indraprastha Institute of Information Technology Delhi (IIIT Delhi), India as an assistant professor, Dr Shah has received his Ph.D. in Computer Science from the National University of Singapore, Singapore. Currently, he is also working as a research fellow in living analytics research centre (LARC) at the Singapore Management University, Singapore. His research interests include the multimodal analysis of user-generated multimedia content in the support of social media applications, multimodal event detection and recommendation, and multimedia analysis, search, and retrieval. Dr Shah is the recipient of several awards, including the runner-up in the Grand Challenge competition of ACM International Conference on Multimedia. He is involved in reviewing of many top-tier international conferences and journals. He has published several research work in top-tier conferences and journals such as Springer MultiMedia Modeling, ACM International Conference on Multimedia, IEEE International Symposium on Multimedia, and Elsevier Knowledge-Based Systems.

Rajiv Ratn Shah received his B.Sc. with honors in Mathematics from Banaras Hindu University, India in 2005. He received his M.Tech. in Computer Technology and Applications from Delhi Technological University, India in 2010. Prior joining Indraprastha Institute of Information Technology Delhi (IIIT Delhi), India as an assistant professor, Dr Shah has received his Ph.D. in Computer Science from the National University of Singapore, Singapore. Currently, he is also working as a research fellow in living analytics research centre (LARC) at the Singapore Management University, Singapore. His research interests include the multimodal analysis of user-generated multimedia content in the support of social media applications, multimodal event detection and recommendation, and multimedia analysis, search, and retrieval. Dr Shah is the recipient of several awards, including the runner-up in the Grand Challenge competition of ACM International Conference on Multimedia. He is involved in reviewing of many top-tier international conferences and journals. He has published several research work in top-tier conferences and journals such as Springer MultiMedia Modeling, ACM International Conference on Multimedia, IEEE International Symposium on Multimedia, and Elsevier Knowledge-Based Systems.

1 Introduction 1.1 Background and Motivation 1.2 Overview 1.3 Acronyms and Notations 1.4 Roadmap   2 Literature Review 2.1 Event Understanding 2.2 Tag Recommendation and Ranking 2.3 Soundtrack Recommendation for UGVs 2.4 Lecture Video Segmentation   3 Event Understanding 3.1 Introduction 3.2 System Overview 3.2.1 EventBuilder 3.2.2 EventSensor 3.3 Evaluation 3.3.1 EventBuilder 3.3.2 EventSensor 3.4 Summary   4 Tag Recommendation and Ranking 4.1 Introduction 4.1.1 Tag Recommendation 4.1.2 Tag Ranking 4.2 System Overview 4.2.1 Tag Recommendation 4.2.2 Random Walk based Relevance Scores 4.2.3 Fusion of Different Tag Recommendation Approaches 4.2.4 Tag Ranking 4.3 Evaluation 4.3.1 Tag Recommendation 4.3.2 Tag Ranking 4.4 Summary   5 Soundtrack Recommendation for UGVs 5.1 Introduction 5.1.1 Increasing Popularity of User-Generated Videos 5.1.2 Challenges with User-Generated Videos in Viewing and Sharing 5.1.3 Motivation for Generating Music Videos for Outdoor User-Generated Videos 5.2 Music Video Generation 5.2.1 Scene Moods Prediction Models 5.2.2 Music Retrieval Techniques 5.2.3 Automatic Music Video Generation Model 5.3 Evaluation 5.3.1 Dataset and Experimental Settings 5.3.2 Evaluation Metrics 5.3.3 Objective Evaluation 5.3.4 Subjective Evaluation 5.3.5 Experimental Results 5.3.6 Comparison with State-of-the-arts 5.3.7 Discussion of Results 5.4 Summary     6 Lecture Video Segmentation 6.1 Introduction 6.2 Lecture Video Segmentation 6.2.1 Prediction of Video Transition Cues using Supervised Learning 6.2.2 Computation of Text Transition Cues using N-gram based Language Model 6.2.3 Computation of SRT Segment Boundaries using the state-of-the-art 6.2.4 Computation of Wikipedia Segment Boundaries 6.2.5 Transition File Generation 6.3.1 Dataset and Experimental Settings 6.3.2 Results from the ATLAS System 6.3.3 Results from the TRACE System 6.4 Summary     7 Conclusions and future work

Erscheint lt. Verlag 30.8.2017
Reihe/Serie Socio-Affective Computing
Socio-Affective Computing
Zusatzinfo XXII, 263 p. 63 illus., 42 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Medizin / Pharmazie Studium
Schlagworte Multimedia • multimodal analysis • Semantics and Sentics Analysis • Social Media • User-Gererated Content
ISBN-10 3-319-61807-5 / 3319618075
ISBN-13 978-3-319-61807-4 / 9783319618074
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
34,93
Das umfassende Lehrbuch

von Michael Kofler

eBook Download (2024)
Rheinwerk Computing (Verlag)
34,93