Partial Differential Equations (eBook)

Mathematical Techniques for Engineers

(Autor)

eBook Download: PDF
2017 | 1st ed. 2017
XIII, 255 Seiten
Springer International Publishing (Verlag)
978-3-319-55212-5 (ISBN)

Lese- und Medienproben

Partial Differential Equations - Marcelo Epstein
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate students in engineering, but the book may also be beneficial for lecturers, and research experts both in academia in industry.

Preface 7
Contents 8
Part I Background 13
1 Vector Fields and Ordinary Differential Equations 14
1.1 Introduction 14
1.2 Curves and Surfaces in mathbbRn 15
1.2.1 Cartesian Products, Affine Spaces 15
1.2.2 Curves in mathbbRn 17
1.2.3 Surfaces in mathbbR3 19
1.3 The Divergence Theorem 20
1.3.1 The Divergence of a Vector Field 20
1.3.2 The Flux of a Vector Field over an Orientable Surface 21
1.3.3 Statement of the Theorem 22
1.3.4 A Particular Case 22
1.4 Ordinary Differential Equations 23
1.4.1 Vector Fields as Differential Equations 23
1.4.2 Geometry Versus Analysis 24
1.4.3 An Example 25
1.4.4 Autonomous and Non-autonomous Systems 27
1.4.5 Higher-Order Equations 28
1.4.6 First Integrals and Conserved Quantities 29
1.4.7 Existence and Uniqueness 32
1.4.8 Food for Thought 33
References 35
2 Partial Differential Equations in Engineering 36
2.1 Introduction 36
2.2 What is a Partial Differential Equation? 37
2.3 Balance Laws 38
2.3.1 The Generic Balance Equation 39
2.3.2 The Case of Only One Spatial Dimension 42
2.3.3 The Need for Constitutive Laws 45
2.4 Examples of PDEs in Engineering 47
2.4.1 Traffic Flow 47
2.4.2 Diffusion 48
2.4.3 Longitudinal Waves in an Elastic Bar 49
2.4.4 Solitons 50
2.4.5 Time-Independent Phenomena 51
2.4.6 Continuum Mechanics 52
References 58
Part II The First-Order Equation 59
3 The Single First-Order Quasi-linear PDE 60
3.1 Introduction 60
3.2 Quasi-linear Equation in Two Independent Variables 62
3.3 Building Solutions from Characteristics 65
3.3.1 A Fundamental Lemma 65
3.3.2 Corollaries of the Fundamental Lemma 66
3.3.3 The Cauchy Problem 67
3.3.4 What Else Can Go Wrong? 69
3.4 Particular Cases and Examples 70
3.4.1 Homogeneous Linear Equation 70
3.4.2 Non-homogeneous Linear Equation 71
3.4.3 Quasi-linear Equation 73
3.5 A Computer Program 80
References 83
4 Shock Waves 84
4.1 The Way Out 84
4.2 Generalized Solutions 85
4.3 A Detailed Example 87
4.4 Discontinuous Initial Conditions 91
4.4.1 Shock Waves 91
4.4.2 Rarefaction Waves 94
References 97
5 The Genuinely Nonlinear First-Order Equation 98
5.1 Introduction 98
5.2 The Monge Cone Field 99
5.3 The Characteristic Directions 101
5.4 Recapitulation 105
5.5 The Cauchy Problem 107
5.6 An Example 108
5.7 More Than Two Independent Variables 110
5.7.1 Quasi-linear Equations 110
5.7.2 Non-linear Equations 113
5.8 Application to Hamiltonian Systems 114
5.8.1 Hamiltonian Systems 114
5.8.2 Reduced Form of a First-Order PDE 115
5.8.3 The Hamilton--Jacobi Equation 116
5.8.4 An Example 117
References 121
Part III Classification of Equations and Systems 122
6 The Second-Order Quasi-linear Equation 123
6.1 Introduction 123
6.2 The First-Order PDE Revisited 125
6.3 The Second-Order Case 126
6.4 Propagation of Weak Singularities 129
6.4.1 Hadamard's Lemma and Its Consequences 129
6.4.2 Weak Singularities 131
6.4.3 Growth and Decay 133
6.5 Normal Forms 135
References 138
7 Systems of Equations 139
7.1 Systems of First-Order Equations 139
7.1.1 Characteristic Directions 139
7.1.2 Weak Singularities 141
7.1.3 Strong Singularities in Linear Systems 142
7.1.4 An Application to the Theory of Beams 143
7.1.5 Systems with Several Independent Variables 145
7.2 Systems of Second-Order Equations 148
7.2.1 Characteristic Manifolds 148
7.2.2 Variation of the Wave Amplitude 150
7.2.3 The Timoshenko Beam Revisited 152
7.2.4 Air Acoustics 155
7.2.5 Elastic Waves 158
References 161
Part IV Paradigmatic Equations 162
8 The One-Dimensional Wave Equation 163
8.1 The Vibrating String 163
8.2 Hyperbolicity and Characteristics 164
8.3 The d'Alembert Solution 165
8.4 The Infinite String 166
8.5 The Semi-infinite String 169
8.5.1 D'Alembert Solution 169
8.5.2 Interpretation in Terms of Characteristics 171
8.5.3 Extension of Initial Data 173
8.6 The Finite String 174
8.6.1 Solution 174
8.6.2 Uniqueness and Stability 177
8.6.3 Time Periodicity 179
8.7 Moving Boundaries and Growth 180
8.8 Controlling the Slinky? 181
8.9 Source Terms and Duhamel's Principle 183
References 188
9 Standing Waves and Separation of Variables 189
9.1 Introduction 189
9.2 A Short Review of the Discrete Case 190
9.3 Shape-Preserving Motions of the Vibrating String 195
9.4 Solving Initial-Boundary Value Problems by Separation of Variables 198
9.5 Shape-Preserving Motions of More General Continuous Systems 204
9.5.1 String with Variable Properties 204
9.5.2 Beam Vibrations 207
9.5.3 The Vibrating Membrane 209
References 214
10 The Diffusion Equation 215
10.1 Physical Considerations 215
10.1.1 Diffusion of a Pollutant 215
10.1.2 Conduction of Heat 218
10.2 General Remarks on the Diffusion Equation 220
10.3 Separating Variables 221
10.4 The Maximum--Minimum Theorem and Its Consequences 222
10.5 The Finite Rod 225
10.6 Non-homogeneous Problems 227
10.7 The Infinite Rod 229
10.8 The Fourier Series and the Fourier Integral 231
10.9 Solution of the Cauchy Problem 234
10.10 Generalized Functions 236
10.11 Inhomogeneous Problems and Duhamel's Principle 240
References 244
11 The Laplace Equation 245
11.1 Introduction 245
11.2 Green's Theorem and the Dirichlet and Neumann Problems 246
11.3 The Maximum-Minimum Principle 249
11.4 The Fundamental Solutions 250
11.5 Green's Functions 252
11.6 The Mean-Value Theorem 254
11.7 Green's Function for the Circle and the Sphere 255
References 258
Index 259

Erscheint lt. Verlag 29.4.2017
Reihe/Serie Mathematical Engineering
Mathematical Engineering
Zusatzinfo XIII, 255 p. 66 illus., 9 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Maschinenbau
Schlagworte continuum physics • Diffusion equations • Dirichlet problems • Discrete vibrating systems • Duhamel's principle • Fourier integral • Green's Functions • Hyperbolic equations • Non-Linear Models • Partial differential equations
ISBN-10 3-319-55212-0 / 3319552120
ISBN-13 978-3-319-55212-5 / 9783319552125
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
16,99
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48