Transparent Data Mining for Big and Small Data -

Transparent Data Mining for Big and Small Data

Buch | Hardcover
XV, 215 Seiten
2017 | 1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-54023-8 (ISBN)
149,79 inkl. MwSt
This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches.As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.

Part I: Transparent Mining.- Chapter 1: The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good.- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens.- Chapter 3: The Princeton Web Transparency and Accountability Project.- Part II: Algorithmic solutions.- Chapter 4: Algorithmic Transparency via Quantitative Input Influence.- Chapter 5.- Learning Interpretable Classification Rules with Boolean Compressed Sensing.- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey.- Part III: Regulatory solutions.- Chapter 7: Beyond the EULA: Improving Consent for Data Mining.- Chapter 8: Regulating Algorithms Regulation? First Ethico-legal Principles, Problems and Opportunities of Algorithms.- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring AlgorithmicAccountability?

Erscheinungsdatum
Reihe/Serie Studies in Big Data
Zusatzinfo XV, 215 p. 23 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Schlagworte 3D graphics and modelling • Algorithm analysis and problem complexity • algorithms and data structures • Automated Decision Making • Big Data/Analytics • Big Data Paradigm Shift • Black-box Algorithms • Business mathematics and systems • Complexity • Computer Science • Cybernetics and systems theory • Data Mining • data mining and knowledge discovery • Engineering • Expert systems / knowledge-based systems • Glass-box Algorithms • International IT and Media Law, Intellectual Prope • Laws of specific jurisdictions and specific areas • Simulation and modeling • Transparent Predictive Models • Transparent vs Opaque Algorithms
ISBN-10 3-319-54023-8 / 3319540238
ISBN-13 978-3-319-54023-8 / 9783319540238
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90