Measures of Complexity -

Measures of Complexity

Festschrift for Alexey Chervonenkis
Buch | Softcover
XXXI, 399 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-35778-2 (ISBN)
101,64 inkl. MwSt

This book brings together historical notes, reviews of research developments, fresh ideas on how to make VC (Vapnik-Chervonenkis) guarantees tighter, and new technical contributions in the areas of machine learning, statistical inference, classification, algorithmic statistics, and pattern recognition.

The contributors are leading scientists in domains such as statistics, mathematics, and theoretical computer science, and the book will be of interest to researchers and graduate students in these domains.

Chervonenkis's Recollections.- A Paper That Created Three New Fields.- On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities.- Sketched History: VC Combinatorics, 1826 up to 1975.- Institute of Control Sciences through the Lens of VC Dimension.- VC Dimension, Fat-Shattering Dimension, Rademacher Averages, and Their Applications.- Around Kolmogorov Complexity: Basic Notions and Results.- Predictive Complexity for Games with Finite Outcome Spaces.- Making Vapnik-Chervonenkis Bounds Accurate.- Comment: Transductive PAC-Bayes Bounds Seen as a Generalization of Vapnik-Chervonenkis Bounds.- Comment: The Two Styles of VC Bounds.- Rejoinder: Making VC Bounds Accurate.- Measures of Complexity in the Theory of Machine Learning.- Classes of Functions Related to VC Properties.- On Martingale Extensions of Vapnik-Chervonenkis.- Theory with Applications to Online Learning.- Measuring the Capacity of Sets of Functions in the Analysis of ERM.- Algorithmic Statistics Revisited.- Justifying Information-Geometric Causal Inference.- Interpretation of Black-Box Predictive Models.- PAC-Bayes Bounds for Supervised Classification.- Bounding Embeddings of VC Classes into Maximum Classes.- Algorithmic Statistics Revisited.- Justifying Information-Geometric Causal Inference.- Interpretation of Black-Box Predictive Models.- PAC-Bayes Bounds for Supervised Classification.- Bounding Embeddings of VC Classes into Maximum Classes.- Strongly Consistent Detection for Nonparametric Hypotheses.- On the Version Space Compression Set Size and Its Applications.- Lower Bounds for Sparse Coding.- Robust Algorithms via PAC-Bayes and Laplace Distributions.- Postscript: Tragic Death of Alexey Chervonenkis.- Credits.- Index.

Erscheinungsdatum
Zusatzinfo XXXI, 399 p. 47 illus., 30 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 658 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Schlagworte Algorithmic statistics • Bayesian theory • causal inference • Communicaton complexity • Computational Complexity • kernels • Kolmogorov complexity • machine learning • Metric Entropy • Optimization • overfitting • pattern recognition • statistical learning theory • Supervised classification • Support vector machines (SVMs) • VC (Vapnik-Chervonenkis) dimension
ISBN-10 3-319-35778-6 / 3319357786
ISBN-13 978-3-319-35778-2 / 9783319357782
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich