Visual Attributes -

Visual Attributes

Buch | Hardcover
VIII, 364 Seiten
2017 | 1st ed. 2017
Springer International Publishing (Verlag)
978-3-319-50075-1 (ISBN)
106,99 inkl. MwSt

This unique text/reference provides a detailed overview of the latest advances in machine learning and computer vision related to visual attributes, highlighting how this emerging field intersects with other disciplines, such as computational linguistics and human-machine interaction. Topics and features: presents attribute-based methods for zero-shot classification, learning using privileged information, and methods for multi-task attribute learning; describes the concept of relative attributes, and examines the effectiveness of modeling relative attributes in image search applications; reviews state-of-the-art methods for estimation of human attributes, and describes their use in a range of different applications; discusses attempts to build a vocabulary of visual attributes; explores the connections between visual attributes and natural language; provides contributions from an international selection of world-renowned scientists, covering both theoretical aspects and practical applications.

Dr. Rogerio Schmidt Feris is a manager at IBM T.J. Watson Research Center, New York, USA, where he leads research in computer vision and machine learning. Dr. Christoph H. Lampert is a professor at the Institute of Science and Technology Austria, where he serves as the Principal Investigator of the Computer Vision and Machine Learning Group. Dr. Devi Parikh is an assistant professor in the School of Interactive Computing at Georgia Tech, USA, where she leads the Computer Vision Lab.

Introduction to Visual Attributes,- Part I: Attribute-Based Recognition.- An Embarrassingly Simple Approach to Zero-Shot Learning.- In the Era of Deep Convolutional Features: Are Attributes still Useful Privileged Data?.- Divide, Share, and Conquer: Multi-Task Attribute Learning with Selective Sharing.- Part II: Relative Attributes and their Application to Image Search.- Attributes for Image Retrieval.- Fine-Grained Comparisons with Attributes.- Localizing and Visualizing Relative Attributes.- Part III: Describing People Based on Attributes.- Deep Learning Face Attributes for Detection and Alignment.- Visual Attributes for Fashion Analytics.- Part IV: Defining a Vocabulary of Attributes.- A Taxonomy of Part and Attribute Discovery Techniques.- The SUN Attribute Database: Organizing Scenes by Affordances, Materials, and Layout.- Part V: Attributes and Language.- Attributesas Semantic Units Between Natural Language and Visual Recognition.- Grounding the Meaning of Words with Visual Attributes.

Erscheinungsdatum
Reihe/Serie Advances in Computer Vision and Pattern Recognition
Zusatzinfo VIII, 364 p. 142 illus., 137 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • artificial intelligence (incl. robotics) • Computer Science • computer vision • Fine-Grained Classification • Human-Machine Communication • Image Processing • image processing and computer vision • Image Search and Retrieval • machine learning • Robotics • Sentence Generation from Images • User interface design and usability • user interfaces and human computer interaction • Visual Analysis Beyond Semantics • Visual Attributes • Zero-Shot Learning
ISBN-10 3-319-50075-9 / 3319500759
ISBN-13 978-3-319-50075-1 / 9783319500751
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95