Mathematical Methods in Tomography -

Mathematical Methods in Tomography

Proceedings of a Conference held in Oberwolfach, Germany, 5-11 June, 1990
Buch | Softcover
X, 270 Seiten
1992 | 1991
Springer Berlin (Verlag)
978-3-540-54970-3 (ISBN)
48,14 inkl. MwSt
The conference was devoted to the discussion of present andfuture techniques in medical imaging, including 3D x-ray CT,ultrasound and diffraction tomography, and biomagnetic ima-ging. The mathematical models, their theoretical aspects andthe development of algorithms were treated. The proceedingscontains surveys on reconstruction in inverse obstacle scat-tering, inversion in 3D, and constrained least squares pro-blems.Research papers include besides the mentioned imagingtechniques presentations on image reconstruction in Hilbertspaces, singular value decompositions, 3D cone beam recon-struction, diffuse tomography, regularization of ill-posedproblems, evaluation reconstruction algorithms and applica-tions in non-medical fields.Contents: Theoretical Aspects:J.Boman: Helgason' s support theorem for Radon transforms-anewproof and a generalization -P.Maass: Singular value de-compositions for Radon transforms- W.R.Madych: Image recon-struction in Hilbert space -R.G.Mukhometov: A problem of in-tegral geometry for a family of rays with multiple reflec-tions -V.P.Palamodov: Inversion formulas for the three-di-mensional ray transform - Medical Imaging Techniques:V.Friedrich: Backscattered Photons - are they useful for asurface - near tomography - P.Grangeat: Mathematical frame-work of cone beam 3D reconstruction via the first derivativeof the Radon transform -P.Grassin,B.Duchene,W.Tabbara: Dif-fraction tomography: some applications and extension to 3Dultrasound imaging -F.A.Gr}nbaum: Diffuse tomography: a re-fined model -R.Kress,A.Zinn: Three dimensional reconstruc-tions in inverse obstacle scattering -A.K.Louis: Mathemati-cal questions of a biomagnetic imaging problem - InverseProblems and Optimization: Y.Censor: On variable blockalgebraic reconstruction techniques -P.P.Eggermont: OnVolterra-Lotka differential equations and multiplicativealgorithms for monotone complementary problems

Helgason's support theorem for Radon transforms - A new proof and a generalization.- Singular value decompositions for Radon transforms.- Image reconstruction in Hilbert space.- A problem of integral geometry for a family of rays with multiple reflections.- Inversion formulas for the three-dimensional ray transform.- Backscattered photons - Are they useful for a surface-near tomography?.- Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform.- Diffraction tomography some applications and extension to 3-D ultrasound imaging.- Diffuse tomography: A refined model.- Three dimensional reconstructions in inverse obstacle scattering.- Mathematical questions of a biomagnetic imaging problem.- On variable block algebraic reconstruction techniques.- On Volterra-Lotka differential equations and multiplicative algorithms for monotone complementarity problems.- Constrained regularized least squares problems.- Multiplicative iterative methods in computed tomography.- Remark on the informative content of few measurements.- Theorems for the number of zeros of the projection radial modulators of the 2D exponential radon transform.- Evaluation of reconstruction algorithms.- Radon transform and analog coding.- Determination of the specific density of an aerosol through tomography.- Computed tomography and rockets.

Erscheint lt. Verlag 15.1.1992
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo X, 270 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 427 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Medizinische Fachgebiete Radiologie / Bildgebende Verfahren Radiologie
Schlagworte algorithms • Computed tomography (CT) • Inverse Problems • Medical • Optimization • Radon Transform • Tomography
ISBN-10 3-540-54970-6 / 3540549706
ISBN-13 978-3-540-54970-3 / 9783540549703
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich