Cohomology of Number Fields - Jürgen Neukirch, Alexander Schmidt, Kay Wingberg

Cohomology of Number Fields

Buch | Softcover
XV, 826 Seiten
2016 | 2. Softcover reprint of the original 2nd ed. 2008
Springer Berlin (Verlag)
978-3-662-51745-1 (ISBN)
213,99 inkl. MwSt
lt;p>This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.

Part I Algebraic Theory: Cohomology of Profinite Groups.- Some Homological Algebra.- Duality Properties of Profinite Groups.- Free Products of Profinite Groups.- Iwasawa Modules.- Part II Arithmetic Theory: Galois Cohomology.- Cohomology of Local Fields.- Cohomology of Global Fields.- The Absolute Galois Group of a Global Field.- Restricted Ramification.- Iwasawa Theory of Number Fields.- Anabelian Geometry.- Literature.- Index.

ntralblatt MATH, Vol. 1136 (14), 2008)

Erscheinungsdatum
Reihe/Serie Grundlehren der mathematischen Wissenschaften
Zusatzinfo XV, 826 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 1270 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Algebra • algebraic number field • Algebraic Number Fields • algebraic number theory • arithmetic • cohomology • Cohomology theory • finite group • Galois group • Galois groups • Homological algebra • Number Theory
ISBN-10 3-662-51745-0 / 3662517450
ISBN-13 978-3-662-51745-1 / 9783662517451
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich