Representation Theory -

Representation Theory

Selected Papers

I. M. Gelfand (Herausgeber)

Buch | Softcover
280 Seiten
1982
Cambridge University Press (Verlag)
978-0-521-28981-8 (ISBN)
84,75 inkl. MwSt
The unifying theme of this collection of papers by the very creative Russian mathematician I. M. Gelfand and his co-workers is the representation theory of groups and lattices. Two of the papers were inspired by application to theoretical physics; the others are pure mathematics though all the papers will interest mathematicians at quite opposite ends of the subject. Dr. G. Segal and Professor C-M. Ringel have written introductions to the papers which explain the background, put them in perspective and make them accessible to those with no specialist knowledge in the area.

1. Two papers on representation theory G. Segal; 2. Representations of the group SL(2,R), where R is a ring of functions A. M. Vershik, I. M. Gelfand and M. I. Graev; 3. Representations of the group of diffeomorphisms A. M. Vershik, I. M. Gelfand and M. I. Graev; 4. An introduction to the paper 'Schubert cells and cohomology of the spaces G/P' G. Segal; 5. Schubert cells and cohomology of the spaces G/P I. N. Bernstein, I. M. Gelfand and S. I. Gelfand; 6. Four papers on problems in linear algebra C-M. Ringel; 7. Coxeter functions and Gabriel's theorem I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev; 8. Free modular lattices and their representations I. M. Gelfand and V. A. Ponomarev; 9. Lattices, representations and algebras connected with them I I. M. Gelfand and V. A. Ponomarev; 10. Lattices, representations and algebras connected with them II I. M. Gelfand and V. A. Ponomarev.

Erscheint lt. Verlag 18.11.1982
Reihe/Serie London Mathematical Society Lecture Note Series
Verlagsort Cambridge
Sprache englisch
Maße 152 x 228 mm
Gewicht 349 g
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 0-521-28981-5 / 0521289815
ISBN-13 978-0-521-28981-8 / 9780521289818
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich