Complex Polynomials - T. Sheil-Small

Complex Polynomials

(Autor)

Buch | Hardcover
452 Seiten
2002
Cambridge University Press (Verlag)
978-0-521-40068-8 (ISBN)
175,80 inkl. MwSt
This book studies the geometric theory of polynomials and rational functions in the plane. Any theory in the plane should make full use of the complex numbers and thus the early chapters build the foundations of complex variable theory, melding together ideas from algebra, topology and analysis. In fact, throughout the book, the author introduces a variety of ideas and constructs theories around them, incorporating much of the classical theory of polynomials as he proceeds. These ideas are used to study a number of unsolved problems, bearing in mind that such problems indicate the current limitations of our knowledge and present challenges for the future. However, theories also lead to solutions of some problems and several such solutions are given including a comprehensive account of the geometric convolution theory. This is an ideal reference for graduate students and researchers working in this area.

Preface; List of notation; 1. The algebra of polynomials; 2. The degree principle and the fundamental theorem of algebra; 3. The Jacobian problem; 4. Analytic and harmonic functions in the unit disc; 5. Circular regions and Grace's theorem; 6. The Ilieff-Sendov conjecture; 7. Self-inversive polynomials; 8. Duality and an extension of Grace's theorem to rational functions; 9. Real polynomials; 10. Level curves; 11. Miscellaneous topics; References; Index.

Erscheint lt. Verlag 7.11.2002
Reihe/Serie Cambridge Studies in Advanced Mathematics
Verlagsort Cambridge
Sprache englisch
Maße 159 x 237 mm
Gewicht 707 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-521-40068-6 / 0521400686
ISBN-13 978-0-521-40068-8 / 9780521400688
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich