Data Science Essentials in Python - Dmitry Zinoviev

Data Science Essentials in Python

Collect - Organize - Explore - Predict - Value

(Autor)

Buch | Softcover
200 Seiten
2016
Pragmatic Bookshelf (Verlag)
978-1-68050-184-1 (ISBN)
25,80 inkl. MwSt
Go from messy, unstructured artifacts stored in SQL and NoSQL databases to a neat, well-organized dataset with this quick reference for the busy data scientist. Understand text mining, machine learning, and network analysis; process numeric data with the NumPy and Pandas modules; describe and analyze data using statistical and network-theoretical methods; and see actual examples of data analysis at work. This one-stop solution covers the essential data science you need in Python.

Data science is one of the fastest-growing disciplines in terms of academic research, student enrollment, and employment. Python, with its flexibility and scalability, is quickly overtaking the R language for data-scientific projects. Keep Python data-science concepts at your fingertips with this modular, quick reference to the tools used to acquire, clean, analyze, and store data.

This one-stop solution covers essential Python, databases, network analysis, natural language processing, elements of machine learning, and visualization. Access structured and unstructured text and numeric data from local files, databases, and the Internet. Arrange, rearrange, and clean the data. Work with relational and non-relational databases, data visualization, and simple predictive analysis (regressions, clustering, and decision trees). See how typical data analysis problems are handled. And try your hand at your own solutions to a variety of medium-scale projects that are fun to work on and look good on your resume.

Keep this handy quick guide at your side whether you're a student, an entry-level data science professional converting from R to Python, or a seasoned Python developer who doesn't want to memorize every function and option.

What You Need:
You need a decent distribution of Python 3.3 or above that includes at least NLTK, Pandas, NumPy, Matplotlib, Networkx, SciKit-Learn, and BeautifulSoup. A great distribution that meets the requirements is Anaconda, available for free from www.continuum.io. If you plan to set up your own database servers, you also need MySQL (www.mysql.com) and MongoDB (www.mongodb.com). Both packages are free and run on Windows, Linux, and Mac OS.

Dmitry Zinoviev has an MS in Physics from Moscow State University and a PhD in Computer Science from Stony Brook University. His research interests include computer simulation and modeling, network science, social network analysis, and digital humanities. He has been teaching at Suffolk University in Boston, MA since 2001.

Erscheinungsdatum
Zusatzinfo black & white illustrations
Verlagsort Raleigh
Sprache englisch
Maße 186 x 234 mm
Gewicht 410 g
Einbandart kartoniert
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Programmiersprachen / -werkzeuge Python
Mathematik / Informatik Informatik Web / Internet
Schlagworte Big Data • Data Science • Daten • Datenanalyse • Python
ISBN-10 1-68050-184-4 / 1680501844
ISBN-13 978-1-68050-184-1 / 9781680501841
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90