Information Geometry and Its Applications (eBook)
XIII, 374 Seiten
Springer Tokyo (Verlag)
978-4-431-55978-8 (ISBN)
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman-Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning,signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.
1 Manifold, Divergence and Dually Flat Structure.- 2 Exponential Families and Mixture Families of Probability.- 3 Invariant Geometry of Manifold of Probability.- 4 α-Geometry, Tsallis q-Entropy and Positive-Definite.- 5 Elements of Differential Geometry.- 6 Dual Affine Connections and Dually Flat Manifold.- 7 Asymptotic Theory of Statistical Inference.- 8 Estimation in the Presence of Hidden Variables.- 9 Neyman–Scott Problem.- 10 Linear Systems and Time Series.- 11 Machine Learning.- 12 Natural Gradient Learning and its Dynamics in Singular.- 13 Signal Processing and Optimization.- Index.
Erscheint lt. Verlag | 2.2.2016 |
---|---|
Reihe/Serie | Applied Mathematical Sciences | Applied Mathematical Sciences |
Zusatzinfo | XIII, 374 p. 98 illus. |
Verlagsort | Tokyo |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Technik | |
Schlagworte | Dual differential geometry • information geometry • machine learning • mathematical neuroscience • Natural gradient learning • Signal Processing |
ISBN-10 | 4-431-55978-7 / 4431559787 |
ISBN-13 | 978-4-431-55978-8 / 9784431559788 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich