Pancyclic and Bipancyclic Graphs - John C. George, Abdollah Khodkar, W.D. Wallis

Pancyclic and Bipancyclic Graphs

Buch | Softcover
XII, 108 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-31950-6 (ISBN)
53,49 inkl. MwSt

This book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation.

The following questions are highlighted through the book:

- What is the smallest possible number of edges in a pancyclic graph with v vertices?

- When do pancyclic graphs exist with exactly one cycle of every possible length?

- What is the smallest possible number of edges in a bipartite graph with v vertices?

- When do bipartite graphs exist with exactly one cycle of every possible length?

1.Graphs.- 2. Degrees and Hamiltoneity.- 3. Pancyclicity.- 4. Minimal Pancyclicity.- 5. Uniquely Pancyclic Graphs.- 6. Bipancyclic Graphs.- 7. Uniquely Bipancyclic Graphs.- 8. Minimal Bipancyclicity.- References. 

"In this book, the authors give a simple survey about the sufficient conditions for a graph to be pancyclic (uniquely bipancyclic). Moreover, the authors give the proofs of some classic results which are useful tools to study and generalize cycle problems. Therefore, this book can help students and researchers alike to find inspiration and ideas on pancyclic and bipancyclic problems." (Junqing Cai, Mathematical Reviews, February, 2017)

Erscheinungsdatum
Reihe/Serie SpringerBriefs in Mathematics
Zusatzinfo XII, 108 p. 64 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Graphentheorie
Schlagworte Bipancyclic Graph • bipartite graph • combinatorics • directed graph • edge-pancyclic • Graph Cycle • graph theory • Hamiltonian graphs • mathematics and statistics • Minimal Bipancyclicity • Minimal Pancyclicity • node-pancyclic • Numerical analysis • pancyclic graph • undirected graph • Uniquely Pancyclic Graphs • vertex-pancyclic
ISBN-10 3-319-31950-7 / 3319319507
ISBN-13 978-3-319-31950-6 / 9783319319506
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99