Lectures on Functional Analysis and the Lebesgue Integral - Vilmos Komornik

Lectures on Functional Analysis and the Lebesgue Integral

(Autor)

Buch | Softcover
403 Seiten
2016 | 1st ed. 2016
Springer London Ltd (Verlag)
978-1-4471-6810-2 (ISBN)
85,59 inkl. MwSt
This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small ℓp spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodým.

Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdős and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they arecombined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included.

Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.

Vilmos Komornik has studied in Budapest, Hungary, and has taught in Hungary and France for nearly 40 years. His main research fields are control theory of partial differential equations and combinatorial number theory. He has made a number of contributions to the theory of J.L. Lions on exact controllability and stabilization and has co-authored several papers on expansions in noninteger bases with P. Erdős.

Some papers of general interest.- Topological prerequisites.- Part 1 Functional analysis.- Hilbert spaces.- Banach spaces.- Locally convex spaces.- Part 2 The Lebesgue integral.- Monotone functions.- The Lebesgue integral in R.- Generalized Newton-Leibniz formula.- Integrals on measure spaces.- Part 3 Function spaces.- Spaces of continuous functions.- Spaces of integrable functions.- Almost everywhere convergence.- Hints and solutions to some exercises.- Bibliography.- Teaching remarks.- Subject index.- Name index.

Erscheinungsdatum
Reihe/Serie Universitext
Zusatzinfo 46 Illustrations, black and white; XX, 403 p. 46 illus.
Verlagsort England
Sprache englisch
Original-Titel Précis d'analyse réelle - Analyse fonctionnelle, intégrale de Lebesgue, espaces fonctionnels, vol - 2
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Schlagworte Banach space • dual space • Functional Analysis • hilbert space • Lebesgue integral • locally convex space • normed space • reflexivity • spaces of continuous functions • spaces of integrable functions • weak convergence
ISBN-10 1-4471-6810-0 / 1447168100
ISBN-13 978-1-4471-6810-2 / 9781447168102
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99