Partial Differential Equations - J�rgen Jost

Partial Differential Equations

(Autor)

Buch | Hardcover
336 Seiten
2002 | and ed.
Springer-Verlag New York Inc.
978-0-387-95428-8 (ISBN)
50,24 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Intended for students who wish to get an introduction to the theory of partial differential equations. This book focuses on elliptic equations and develops the relevant existence schemes, with a view towards nonlinear problems. It also develops the main methods for obtaining estimates for solutions of elliptic equations.
This book is intended for students who wish to get an introduction to the theory of partial differential equations. The author focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. These are maximum principle methods (particularly important for numerical analysis schemes), parabolic equations, variational methods, and continuity methods. This book also develops the main methods for obtaining estimates for solutions of elliptic equations: Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. Connections between elliptic, parabolic, and hyperbolic equations are explored, as well as the connection with Brownian motion and semigroups. This book can be utilized for a one-year course on partial differential equations. Jurgen Jost is Director of the Max Planck Institute for Mathematics in the Sciences and Professor of Mathematics at the University of Leipzig. He is the author of a number of Springer books, including Postmodern Analysis (1998), Compact Riemann Surfaces (1997) and Riemannian Geometry and Geometric Analysis (1995).
The present book is an expanded translation of the original German version, Partielle Differentialgleichungen (1998).

Introduction.- The Laplace equation as the prototype of an elliptic partial differential equation of 2nd order.- The maximum principle.- Existence techniques I: methods based on the maximum principle.- Existence techniques II: Parabolic methods. The Head equation.- The wave equation and its connections with the Laplace and heat equation.- The heat equation, semigroups, and Brownian motion.- The Dirichlet principle. Variational methods for the solution of PDE (Existence techniques III).- Sobolev spaces and L2 regularity theory.- Strong solutions.- The regularity theory of Schauder and the continuity method (Existence techniques IV).- The Moser iteration method and the reqularity theorem of de Giorgi and Nash.- Banach and Hilbert spaces. The Lp-spaces.- Bibliography.

Erscheint lt. Verlag 12.8.2002
Reihe/Serie Graduate Texts in Mathematics ; v.214
Zusatzinfo 10 illus.
Verlagsort New York, NY
Sprache englisch
Maße 156 x 234 mm
Gewicht 666 g
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-387-95428-7 / 0387954287
ISBN-13 978-0-387-95428-8 / 9780387954288
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99