Hidden Semi-Markov Models (eBook)
208 Seiten
Elsevier Science (Verlag)
978-0-12-802771-4 (ISBN)
Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms.
Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science.
- Discusses the latest developments and emerging topics in the field of HSMMs
- Includes a description of applications in various areas including, Human Activity Recognition, Handwriting Recognition, Network Traffic Characterization and Anomaly Detection, and Functional MRI Brain Mapping.
- Shows how to master the basic techniques needed for using HSMMs and how to apply them.
Shun-Zheng Yu is a professor at the School of Information Science and Technology at Sun Yat-Sen University, China.. He was a visiting scholar at Princeton University and IBM Thomas J. Watson Research Center from 1999 to 2002. He has authored two hundred journal papers that used artificial intelligence/machine learning methods for inference and estimation, among which fifty papers involved hidden semi-Markov models. Professor Yu is a well-recognized expert in the field of HSMMs and their applications. He has developed new estimation algorithms for HSMMs and applied them in various fields. The papers entitled 'Hidden Semi-Markov Models (2010)' Published in the Elsevier Journal Artificial Intelligence , 'Practical Implementation of an Efficient Forward-Backward Algorithm for an Explicit Duration Hidden Markov Model (2006) published in IEEE Signal Processing Letters', 'A Hidden Semi-Markov Model with Missing Data and Multiple Observation Sequences for Mobility Tracking (2003)' Published in the Elsevier Journal Signal Processing and ' An Efficient Forward-Backward Algorithm for an Explicit Duration Hidden Markov Model (2003) published in IEEE Signal Processing Letters ' have been cited by hundreds of papers.
Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms. Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science. - Discusses the latest developments and emerging topics in the field of HSMMs- Includes a description of applications in various areas including, Human Activity Recognition, Handwriting Recognition, Network Traffic Characterization and Anomaly Detection, and Functional MRI Brain Mapping. - Shows how to master the basic techniques needed for using HSMMs and how to apply them.
Erscheint lt. Verlag | 22.10.2015 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik | |
ISBN-10 | 0-12-802771-1 / 0128027711 |
ISBN-13 | 978-0-12-802771-4 / 9780128027714 |
Haben Sie eine Frage zum Produkt? |
Größe: 8,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich