Essentials of the Finite Element Method -  Dimitrios G Pavlou

Essentials of the Finite Element Method (eBook)

For Mechanical and Structural Engineers
eBook Download: PDF | EPUB
2015 | 1. Auflage
500 Seiten
Elsevier Reference Monographs (Verlag)
978-0-12-802606-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
96,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Fundamental coverage,ÿanalytic mathematics, and up-to-date software applications are hard to find in a single text on the finite element method (FEM). Dimitrios Pavlou's Essentials of the Finite Element Method: For Structural and Mechanical Engineers makes the search easier by providing a comprehensive but concise text for those new to FEM, or just in need of a refresher on the essentials. Essentials of the Finite Element Method explains the basics of FEM, then relates these basics to a number of practical engineering applications. Specific topics covered include linear spring elements, bar elements, trusses, beams and frames, heat transfer, and structural dynamics. Throughout the text, readers are shown step-by-step detailed analyses for finite element equations development. The text also demonstrates how FEM is programmed, with examples in MATLAB, CALFEM, and ANSYS allowing readers to learn how to develop their own computer code. Suitable for everyone from first-time BSc/MSc students to practicing mechanical/structural engineers, Essentials of the Finite Element Method presents a complete reference text for the modern engineer. - Provides complete and unified coverage of the fundamentals of finite element analysis - Covers stiffness matrices for widely used elements in mechanical and civil engineering practice - Offers detailed and integrated solutions of engineering examples and computer algorithms in ANSYS, CALFEM, and MATLAB

Dimitrios Pavlou is Professor of Mechanics at University of Stavanger in Norway, and Elected Academician of the Norwegian Academy of Technological Sciences. He has had over twenty-five years of teaching and research experience in the fields of Theoretical and Applied Mechanics, Fracture Mechanics, Finite and Boundary Elements, Structural Dynamics, Anisotropic Materials, and their applications in Engineering Structures. Professor Pavlou is the author of titles, 'Essentials of the Finite Element Method' (Elsevier) and 'Composite Materials in Piping Applications' (Destech Publications), and guest co-editor of several international journal Special Issues and conference proceedings. His research portfolio includes over 120 publications in the areas of Applied Mechanics and Engineering Mathematics (majority as single or first author). Since January 2020, Professor Pavlou joined the Editorial Board of the journal 'Computer-Aided Civil and Infrastructure Engineering' (IF=11.775, 1st of 134 journals in Civil Engineering - 2020 Journal Citation Reports). He works as Editor for the journals 'Maritime Engineering (IF=5.952); 'Nondestructive Testing and Evaluation" (IF=2.098); 'Advances in Civil Engineering" (IF= 1.843); 'Aerospace Technology and Management" (IF= 0.713); 'Dynamics"; 'Aeronautics and Aerospace Open Access Journal" and 'Journal of Materials Science and Research".He is also an Editorial Board Member for the 'International Journal of Structural Integrity," the 'International Journal of Ocean Systems Management" and 'Journal of Materials Science and Research"."

Chapter 1

An Overview of the Finite Element Method


Abstract


In this chapter, a brief overview of the finite element method answers questions such as: What are finite elements? Why is the finite element method (FEM) important for mechanical and structural design? What are the advantages and disadvantages of FEM? What is a structural matrix? What are the main steps for finite element modeling? On which physical principles the FEM is based? Apart from the above overview, an introduction to the computer-aided learning program, CALFEM, as well as a brief description of the ANSYS working environment is provided. However, the subsequent chapters provide a better understanding of these tools.

Keywords

Finite elements

FEM

Structural matrix

CALFEM

ANSYS

FE modeling

FE overview

1.1 What Are Finite Elements?


Since the differential equations describing the displacement field of a structure are difficult (or impossible) to solve by analytical methods, the domain of the structural problem can be divided into a large number of small subdomains, called finite elements (FE). The displacement field of each element is approximated by polynomials, which are interpolated with respect to prescribed points (nodes) located on the boundary (or within) the element. The polynomials are referred to as interpolation functions, where variational or weighted residual methods are applied to determine the unknown nodal values.

1.2 Why Finite Element Method Is Very Popular?


The concept of the finite element method (FEM) was described in 1956, when Turner et al. used pin-jointed bars and triangular plates to calculate aircraft structures. However, as the method is based on the solution of systems of algebraic equations with large number of unknowns, in past few decades, FEM has become very popular due to the development of high-speed digital computers.

After 1980, new commercial software packages were developed, boosting the application of FEM to structural engineering, heat transfer, fluid mechanics, aerodynamics, and electrostatics.

Among the pioneers who founded and developed FEM are Przemieniecki, Zienkiewicz and Cheung, Gallagher, Argyris, etc.

1.3 Main Advantages of Finite Element Method


1. Analyzes problems with complex geometry.

2. Analyzes problems with complex loading (point loads, pressure, inertial forces, thermal loading, fluid-structure interactions, etc.).

3. Analyzes a wide variety of engineering problems (structural engineering, heat transfer, fluid mechanics, aerodynamics, and electrostatics).

1.4 Main Disadvantages of Finite Element Method


1. FEM results are approximate. Their accuracy depends on the number of elements, the type of elements, the adopted assumptions, etc.

2. The accuracy of the results of FEM depends on the experience of the software user, for example, the use of the wrong type or distorted elements, insufficient supports to prevent all rigid body motions, and different units for the same quantity yields mistakes.

3. FEM has inherent errors (e.g., the geometry of the structure is approximate, the field deformation is assumed to be a polynomial over the element, the computer carries only a finite number of digits, the combination of elements with very large stiffness differences yields numerical difficulties).

1.5 What Is Structural Matrix?


Structural matrix is a matrix correlating the forces and displacements in the nodal points of the elements. For a structural FE, the structural matrix contains the geometric and material behavior information that indicated the resistance of the element to deformation when subjected to loading. The primary characteristics of an FE are embodied in the element structural matrix. There are two types of structural matrices: stiffness matrices, and transfer matrices (Figure 1.1).

Figure 1.1 Types of structural matrices.

Taking into account the nomenclature of Figure 1.2, the stiffness and the transfer matrix for a simple beam are:

Figure 1.2 Nomenclature of the nodal forces and displacements at the ends of a beam.

1.5.1 Stiffness Matrix


aMaVbMb=12EJℓ3−6EJℓ2−12EJℓ3−6EJℓ2−6EJℓ24EJℓ6EJℓ22EJℓ−12EJℓ36EJℓ212EJℓ36EJℓ2−6EJℓ22EJℓ6EJℓ24EJℓwaθawbθb

1.5.2 Transfer Matrix


aθaVbMb=1−ℓ−ℓ3/6EJ−ℓ2/2EJ01ℓ2/2EJℓ/EJ00100001waθaVaMa

1.6 What Are the Steps to be Followed for Finite Element Method Analysis of Structure?


1.6.1 Step 1. Discretize or Model the Structure


The structure is divided into FEs. This step is one of the most crucial in determining the solution accuracy of the problem.

1.6.2 Step 2. Define the Element Properties


At this step, the user must define the element properties and select the types of FEs that are the most suitable to model the physical problem.

1.6.3 Step 3. Assemble the Element Structural Matrices


The structural matrix of an element consists of coefficients that can be derived, for example, from equilibrium. The structural matrix relates the nodal displacements to the applied forces at the nodes. Assembling of the element structural matrices implies application of equilibrium for the whole structure.

1.6.4 Step 4. Apply the Loads


At this step, externally applied concentrated or uniform forces, moments, or ground motions are provided.

1.6.5 Step 5. Define Boundary Conditions


At this step the support conditions must be provided, that is, several nodal displacements must be set to known values.

1.6.6 Step 6. Solve the System of Linear Algebraic Equations


The sequential application of the above steps leads to a system of simultaneous algebraic equations where the nodal displacements are usually the unknowns.

1.6.7 Step 7. Calculate Stresses


At the users discretion, the commercial programs can also calculate stresses, reactions, mode shapes, etc.

1.7 What About the Available Software Packages?


Some of the important FEM packages that are available today include Ansys, Abaqus, Nastran, and Lusas. Their structure is based on pre-processor, solution process, post-processor.

Pre-processor stage: data preparation takes place, that is, selection of elements, selection of material properties, discretization of the structure, definition of boundary conditions, and definition of loadings. With these data, the computer algorithm creates the structural equations for every element. Since the data input takes place during this stage, the user interacts with the software only during the pre-processing step.

Solution process stage: computer software solves the system of algebraic equations derived at the pre-processor stage.

Post-processor stage: numerical results obtained by the previous stage are demonstrated graphically in order to represent the displacement, the strain, and the stress field.

1.8 Physical Principles in the Finite Element Method


As it is already mentioned, FEM is based on small subdomain elements. In order to derive the displacement field for the whole structure, a structural matrix and the associated element equation for each element should be derived first. This fundamental equation correlates the nodal displacements and the forces of each element according to the following abbreviated form

=kd

where [k] is the element stiffness matrix (or local matrix), {r} the forces at the nodes, and {d} the displacements at the nodes.

The derivation of the element stiffness matrix is very important for the accurate numerical simulation of the structure. To achieve this target, the methods for elements stiffness matrix derivation are classified in three categories: direct equilibrium method, energy methods, and weighted residual methods.

The characteristics of each of the above categories are shown in following figures.

In the following chapters, focus will be given on the direct equilibrium method for analyzing springs, bars, trusses, beams, and frames, and the minimum potential energy (MPE) for analyzing springs, bars, trusses, beams, frames, plane stress, and three-dimensional (3D) problems.

It should be noted that most of the FEM applications on structural engineering are based on the MPE method. This method uses the calculus of variations. Therefore, a functional should be initially identified. For solid mechanic problems, the total potential energy Π is the functional to be minimized. Since this functional is expressed in terms of nodal displacements {d}, the condition of its minimization Π/∂d yields the required element equation =kd.

1.9 From the Element Equation to the Structure Equation


To...

Erscheint lt. Verlag 14.7.2015
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Bauwesen
Technik Maschinenbau
ISBN-10 0-12-802606-5 / 0128026065
ISBN-13 978-0-12-802606-9 / 9780128026069
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 31,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 35,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
94,95
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99