Stable Convergence and Stable Limit Theorems (eBook)

eBook Download: PDF
2015 | 2015
X, 228 Seiten
Springer International Publishing (Verlag)
978-3-319-18329-9 (ISBN)

Lese- und Medienproben

Stable Convergence and Stable Limit Theorems - Erich Häusler, Harald Luschgy
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics - such as the classical central limit theorem - which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level with a solid knowledge of measure theoretic probability.

Erich Haeusler studied mathematics and physics at the University of Bochum from 1972 to 1978. He received his doctorate in mathematics in 1982 from the University of Munich. Since 1991 he has been Professor of Mathematics at the University of Giessen, where he teaches probability and mathematical statistics. Harald Luschgy studied mathematics, physics and mathematical logic at the Universities of Bonn and Münster. He received his doctorate in mathematics in 1976 from the University of Münster. He held visiting positions at the Universities of Hamburg, Bayreuth, Dortmund, Oldenburg, Passau and Wien and was a recipient of a Heisenberg grant from the DFG. Since 1995 he is Professor of Mathematics at the University of Trier where he teaches probability and mathematical statistics.

Erich Haeusler studied mathematics and physics at the University of Bochum from 1972 to 1978. He received his doctorate in mathematics in 1982 from the University of Munich. Since 1991 he has been Professor of Mathematics at the University of Giessen, where he teaches probability and mathematical statistics. Harald Luschgy studied mathematics, physics and mathematical logic at the Universities of Bonn and Münster. He received his doctorate in mathematics in 1976 from the University of Münster. He held visiting positions at the Universities of Hamburg, Bayreuth, Dortmund, Oldenburg, Passau and Wien and was a recipient of a Heisenberg grant from the DFG. Since 1995 he is Professor of Mathematics at the University of Trier where he teaches probability and mathematical statistics.

Preface.- 1.Weak Convergence of Markov Kernels.- 2.Stable Convergence.- 3.Applications.- 4.Stability of Limit Theorems.- 5.Stable Martingale Central Limit Theorems.- 6.Stable Functional Martingale Central Limit Theorems.- 7.A Stable Limit Theorem with Exponential Rate.- 8.Autoregression of Order One.- 9.Branching Processes.- A. Appendix.- B. Appendix.- Bibliography.

Erscheint lt. Verlag 9.6.2015
Reihe/Serie Probability Theory and Stochastic Modelling
Probability Theory and Stochastic Modelling
Zusatzinfo X, 228 p.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte 60-02, 60F05, 60F17 • Gauss kernels • limit theorems • mixing convergence of random variables • stable convergence of random variables • weak convergence of Markov kernels
ISBN-10 3-319-18329-X / 331918329X
ISBN-13 978-3-319-18329-9 / 9783319183299
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
24,99