Finite Model Theory and Its Applications
Springer Berlin (Verlag)
978-3-642-43860-8 (ISBN)
JOEL H. SPENCER, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is also a Sloane Foundation Fellow.
Unifying Themes in Finite Model Theory.- On the Expressive Power of Logics on Finite Models.- Finite Model Theory and Descriptive Complexity.- Logic and Random Structures.- Embedded Finite Models and Constraint Databases.- A Logical Approach to Constraint Satisfaction.- Local Variations on a Loose Theme: Modal Logic and Decidability.
From the reviews:
"This book has its origins in a workshop held in Philadelphia in 1999 ... . The chapters are of an expository nature, each one providing an excellent starting point to explore the research literature in the relevant topic. ... I found it to be a more accessible introduction to the subject ... and a useful starting point for graduate students entering the subject. ... This will appeal ... to those readers trained in classical traditions of logic who wish to approach the subject." (Anuj Dawar, Mathematical Reviews, Issue 2009 i)
Erscheint lt. Verlag | 30.10.2014 |
---|---|
Reihe/Serie | Texts in Theoretical Computer Science. An EATCS Series |
Zusatzinfo | XIII, 440 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 694 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
Schlagworte | Artificial Intelligence • Complexity • Complexity theory • Computer • Computer Science • Database • Logic • Software engineering • Software Engineering / Softwareentwicklung • Softwareentwicklung |
ISBN-10 | 3-642-43860-1 / 3642438601 |
ISBN-13 | 978-3-642-43860-8 / 9783642438608 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich