Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change - Jayce Getz, Mark Goresky

Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change

Buch | Softcover
XIV, 258 Seiten
2014 | 2012
Springer Basel (Verlag)
978-3-0348-0795-1 (ISBN)
53,49 inkl. MwSt
This book contains basic material on intersection cohomology, modular cycles and automorphic forms from the classical and adèlic points of view. Award winning monograph of the 2011 Ferran Sunyer i Balaguer Prize competition.
In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.

Chapter 1. Introduction.- Chapter 2. Review of Chains and Cochains.- Chapter 3. Review of Intersection Homology and Cohomology.- Chapter 4. Review of Arithmetic Quotients.- Chapter 5. Generalities on Hilbert Modular Forms and Varieties.- Chapter 6. Automorphic vector bundles and local systems.- Chapter 7. The automorphic description of intersection cohomology.- Chapter 8. Hilbert Modular Forms with Coefficients in a Hecke Module.- Chapter 9. Explicit construction of cycles.- Chapter 10. The full version of Theorem 1.3.- Chapter 11. Eisenstein Series with Coefficients in Intersection Homology.- Appendix A. Proof of Proposition 2.4.- Appendix B. Recollections on Orbifolds.- Appendix C. Basic adèlic facts.- Appendix D. Fourier expansions of Hilbert modular forms.- Appendix E. Review of Prime Degree Base Change for GL2.- Bibliography.

Erscheint lt. Verlag 13.4.2014
Reihe/Serie Progress in Mathematics
Zusatzinfo XIV, 258 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 416 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte automorphic forms • Fourier coefficients • Hecke operators • Hilbert modular varieties • intersection cohomology
ISBN-10 3-0348-0795-3 / 3034807953
ISBN-13 978-3-0348-0795-1 / 9783034807951
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber

von Klaus Scharff

Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
20,00