Statistical Computing with R, Second Edition - Maria L. Rizzo

Statistical Computing with R, Second Edition

(Autor)

Buch | Hardcover
490 Seiten
2019 | 2nd edition
Crc Press Inc (Verlag)
978-1-4665-5332-3 (ISBN)
85,95 inkl. MwSt
Praise for the First Edition:

". . . the book serves as an excellent tutorial on the R language, providing examples that illustrate programming concepts in the context of practical computational problems. The book will be of great interest for all specialists working on computational statistics and Monte Carlo methods for modeling and simulation." – Tzvetan Semerdjiev, Zentralblatt Math

Computational statistics and statistical computing are two areas within statistics that may be broadly described as computational, graphical, and numerical approaches to solving statistical problems. Like its bestselling predecessor, Statistical Computing with R, Second Edition covers the traditional core material of these areas with an emphasis on using the R language via an examples-based approach. The new edition is up-to-date with the many advances that have been made in recent years.

Features






Provides an overview of computational statistics and an introduction to the R computing environment.



Focuses on implementation rather than theory.



Explores key topics in statistical computing including Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation.



Includes new sections, exercises and applications as well as new chapters on resampling methods and programming topics.



Includes coverage of recent advances including R Studio, the tidyverse, knitr and ggplot2



Accompanied by online supplements available on GitHub including R code for all the exercises as well as tutorials and extended examples on selected topics.

Suitable for an introductory course in computational statistics or for self-study, Statistical Computing with R, Second Edition provides a balanced, accessible introduction to computational statistics and statistical computing.

About the Author

Maria Rizzo is Professor in the Department of Mathematics and Statistics at Bowling Green State University in Bowling Green, Ohio, where she teaches statistics, actuarial science, computational statistics, statistical programming and data science. Prior to joining the faculty at BGSU in 2006, she was Assistant Professor in the Department of Mathematics at Ohio University in Athens, Ohio. Her main research area is energy statistics and distance correlation. She is the software developer and maintainer of the energy package for R. She also enjoys writing books including a forthcoming joint research monograph on energy statistics.

Maria Rizzo is Professor in the Department of Mathematics and Statistics at Bowling Green State University in Bowling Green, Ohio, where she teaches statistics, actuarial science, computational statistics, statistical programming and data science. Prior to joining the faculty at BGSU in 2006, she was Assistant Professor in the Department of Mathematics at Ohio University in Athens, Ohio. Her main research area is energy statistics and distance correlation. She is the software developer and maintainer of the energy package for R. She also enjoys writing books including a forthcoming joint research monograph on energy statistics.

Introduction. Probability and Statistics Review. Methods for Generating Random Variables. Visualization of Multivariate Data. Monte Carlo Integration and Variance Reduction. Monte Carlo Methods in Inference. Bootstrap and Jackknife. Permutation Tests. Markov Chain Monte Carlo Methods. Probability Density Estimation. Smoothing and Nonparametric Regression. High Dimensional Data. Numerical Methods in R. Optimization.

Reihe/Serie Chapman & Hall/CRC The R Series
Zusatzinfo 14 Tables, black and white; 150 Illustrations, black and white
Verlagsort Bosa Roca
Sprache englisch
Maße 156 x 234 mm
Gewicht 780 g
Themenwelt Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-4665-5332-4 / 1466553324
ISBN-13 978-1-4665-5332-3 / 9781466553323
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich