Markov Random Field Modeling in Image Analysis - S. Z. Li

Markov Random Field Modeling in Image Analysis

(Autor)

Buch | Softcover
342 Seiten
2001 | 2nd Revised edition
Springer Verlag, Japan
978-4-431-70309-9 (ISBN)
82,34 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. This book presents a study on the use of MRFs for solving computer vision problems. It covers: introduction to fundamental theories, formulations of MRF vision models, MRF parameter estimation, and optimization algorithms.
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. The book covers the following parts essential to the subject: introduction to fundamental theories, formulations of MRF vision models, MRF parameter estimation, and optimization algorithms. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation.This second edition includes the most important progress in Markov modeling in image analysis in recent years such as Markov modeling of images with "macro" patterns (e.g. the FRAME model), Markov chain Monte Carlo (MCMC) methods, reversible jump MCMC. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs.
It is also suitable as a text for advanced courses in these areas.

Foreword by Anil K. Jain.- Introduction.- Low Level MRF Models.- Discontinuities in MRFs.- Discontinuity-Adaptivity Model and Robust Estimation.- High Level MRF Models.- MRF Parameter Estimation.- Parameter Estimation in Optimal Object Recognition.- Minimization -- Local Methods.- Minimization -- Global Methods.- References.- List of Notation.- Index.The complete table of contents can be found on the Internet:http://www.springer.de

Erscheint lt. Verlag 1.1.2001
Reihe/Serie Computer Science Workbench
Zusatzinfo 99 figs
Verlagsort Tokyo
Sprache englisch
Maße 156 x 234 mm
Gewicht 489 g
Einbandart Paperback
Themenwelt Mathematik / Informatik Informatik Grafik / Design
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
ISBN-10 4-431-70309-8 / 4431703098
ISBN-13 978-4-431-70309-9 / 9784431703099
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00