Reduced Order Methods for Modeling and Computational Reduction

Buch | Hardcover
X, 334 Seiten
2013 | 2014
Springer International Publishing (Verlag)
978-3-319-02089-1 (ISBN)

Lese- und Medienproben

Reduced Order Methods for Modeling and Computational Reduction -
117,69 inkl. MwSt
This book details advances and developments in reduced order methods for modeling and computational reduction of complex parametrized systems held by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques.

This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics.

Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects.

This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

1 W. H. A. Schilders, A. Lutowska: A novel approach to model order reduction for coupled multiphysics problems.- 2 A. C. Ionita, A. C. Antoulas: Case study. Parametrized Reduction using Reduced-Basis and the Loewner Framework.- 3 M. Bebendorf, Y. Maday, B. Stamm: Comparison of some reduced representation approximations.- 4 H. Antil, M. Heinkenschloss, D. C. Sorensen: Application of the Discrete Empirical Interpolation Method to Reduced Order Modeling of Nonlinear and Parametric System.- 5 K. Urban, S. Volkwein, O. Zeeb: Greedy Sampling using Nonlinear Optimization.- 6 P. Benner, L. Feng: A Robust Algorithm for Parametric Model Order Reduction based on Implicit Moment Matching.- 7 F. Chen, J. S. Hesthaven, X. Zhu: On the use of reduced basis methods to accelerate and stabilize the Parareal method.- 8 C. Farhat, D. Amsallem: On the stability of reduced-order linearized computational fluid dynamics models based on POD and Galerkin projection: descriptor vs non-descriptor forms.- 9 T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza: Model Order Reduction in Fluid Dynamics: Challenges and Perspectives.- 10 L. Grinberg, M. Deng, A. Yakhot, G. Karniadakis: Window Proper Orthogonal Decomposition. Application to Continuum and Atomistic Data.- 11 M. Bergmann, T. Colin, A. Iollo, D. Lombardi, O. Saut, H. Telib: Reduced order models at work in Aeronautics and Medicine.

Erscheint lt. Verlag 12.12.2013
Reihe/Serie MS&A
Zusatzinfo X, 334 p. 79 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 684 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Computational Mechanics • Model order reduction • parametrized PDE • reduced order modeling • Scientific Computing
ISBN-10 3-319-02089-7 / 3319020897
ISBN-13 978-3-319-02089-1 / 9783319020891
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99