Progress in Inverse Spectral Geometry - Stig I. Andersson, Michel L. Lapidus

Progress in Inverse Spectral Geometry

Buch | Softcover
V, 197 Seiten
2012 | 1. Softcover reprint of the original 1st ed. 1997
Springer Basel (Verlag)
978-3-0348-9835-5 (ISBN)
53,49 inkl. MwSt
most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x,O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt,E ®E), locally given by 00 K(x,y; t) = L-IAk(~k ® 'Pk)(X,y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.

Spectral Geometry: An Introduction and Background Material for this Volume.- Geometry Detected by a Finite Part of the Spectrum.- Spectral Geometry on Nilmanifolds.- Upper Bounds for the Poincaré Metric Near a Fractal Boundary.- Construction de Variétés Isospectrales du Théorème de T. Sunada.- Inverse spectral theory for Riemannian foliations and curvature theory.- Computer Graphics and the Eigenfunctions for the Koch Snowflake Drum.- Inverse Spectral Geometry.- Inverse Spectral Geometry on Riemann Surfaces.- Quantum Ergodicity.

Erscheint lt. Verlag 12.10.2012
Reihe/Serie Trends in Mathematics
Zusatzinfo V, 197 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 332 g
Themenwelt Sachbuch/Ratgeber Natur / Technik Garten
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Curvature • Fractal • inverse spectral geometry • Koch snowflake • manifold
ISBN-10 3-0348-9835-5 / 3034898355
ISBN-13 978-3-0348-9835-5 / 9783034898355
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Obst- und Ziergehölze, Stauden, Kübel- und Zimmerpflanzen richtig …

von Hansjörg Haas

Buch | Hardcover (2023)
Gräfe und Unzer (Verlag)
34,00