Program Logics for Certified Compilers - Andrew W. Appel

Program Logics for Certified Compilers

(Autor)

Buch | Hardcover
472 Seiten
2014
Cambridge University Press (Verlag)
978-1-107-04801-0 (ISBN)
99,75 inkl. MwSt
This book covers practical and theoretical separation logic suitable for graduate students. On the practical side, it covers verification in Hoare and separation logics, simple case studies, and the Verifiable C program logic. On the theoretical side, it covers separation algebras, step-indexed models, indirection theory, tree-shares, and the semantic construction of Verifiable C.
Separation logic is the twenty-first-century variant of Hoare logic that permits verification of pointer-manipulating programs. This book covers practical and theoretical aspects of separation logic at a level accessible to beginning graduate students interested in software verification. On the practical side it offers an introduction to verification in Hoare and separation logics, simple case studies for toy languages, and the Verifiable C program logic for the C programming language. On the theoretical side it presents separation algebras as models of separation logics; step-indexed models of higher-order logical features for higher-order programs; indirection theory for constructing step-indexed separation algebras; tree-shares as models for shared ownership; and the semantic construction (and soundness proof) of Verifiable C. In addition, the book covers several aspects of the CompCert verified C compiler, and its connection to foundationally verified software analysis tools. All constructions and proofs are made rigorous and accessible in the Coq developments of the open-source Verified Software Toolchain.

Andrew W. Appel is the Eugene Higgins Professor and Chairman of the Department of Computer Science at Princeton University, New Jersey, where he has been on the faculty since 1986. His research is in software verification, computer security, programming languages and compilers, automated theorem proving, and technology policy. He is known for his work on Standard ML of New Jersey and on Foundational Proof-Carrying Code. He is a Fellow of the Association for Computing Machinery, recipient of the ACM SIGPLAN Distinguished Service Award, and has served as Editor in Chief of ACM Transactions on Programming Languages and Systems. His previous books include Compiling with Continuations (1992), the Modern Compiler Implementation series (1998 and 2002) and Alan Turing's Systems of Logic (2012).

1. Introduction; Part I. Generic Separation Logic: 2. Hoare logic; 3. Separation logic; 4. Soundness of Hoare logic; 5. Mechanized semantic library Andrew W. Appel, Robert Dockins and Aquinas Hobor; 6. Separation algebras; 7. Operators on separation algebras; 8. First-order separation logic; 9. A little case study; 10. Covariant recursive predicates; 11. Share accounting; Part II. Higher-Order Separation Logic: 12. Separation logic as a logic; 13. From separation algebras to separation logic; 14. Simplification by rewriting; 15. Introduction to step-indexing; 16. Predicate implication and subtyping; 17. General recursive predicates; 18. Case study: separation logic with first-class functions; 19. Data structures in indirection theory; 20. Applying higher-order separation logic; 21. Lifted separation logics; Part III. Separation Logic for CompCert: 22. Verifiable C; 23. Expressions, values, and assertions; 24. The VST separation logic for C light; 25. Typechecking for Verifiable C Josiah Dodds; 26. Derived rules and proof automation for C light; 27. Proof of a program; 28. More C programs; 29. Dependently typed C programs; 30. Concurrent separation logic; Part IV. Operational Semantics of CompCert: 31. CompCert; 32. The CompCert memory model Xavier Leroy, Andrew W. Appel, Sandrine Blazy and Gordon Stewart; 33. How to specify a compiler Lennart Beringer, Robert Dockins and Gordon Stewart; 34. C light operational semantics; Part V. Higher-Order Semantic Models: 35. Indirection theory Aquinas Hobor, Andrew Appel and Robert Dockins; 36. Case study: lambda-calculus with references; 37. Higher-order Hoare logic; 38. Higher-order separation logic; 39. Semantic models of predicates-in-the-heap; Part VI. Semantic Model and Soundness of Verifiable C: 40. Separation algebra for CompCert; 41. Share models; 42. Juicy memories Gordon Stewart and Andrew W. Appel; 43. Modeling the Hoare judgment; 44. Semantic model of CSL; 45. Modular structure of the development; Part VII. Applications: 46. Foundational static analysis; 47. Heap theorem prover Gordon Stewart, Lennart Beringer and Andrew W. Appel.

Co-Autor Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds
Zusatzinfo 52 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 150 x 231 mm
Gewicht 750 g
Themenwelt Informatik Programmiersprachen / -werkzeuge Assembler
Informatik Theorie / Studium Compilerbau
ISBN-10 1-107-04801-X / 110704801X
ISBN-13 978-1-107-04801-0 / 9781107048010
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich