Approximation Theory and Harmonic Analysis on Spheres and Balls (eBook)
XVIII, 440 Seiten
Springer New York (Verlag)
978-1-4614-6660-4 (ISBN)
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography.
This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
Feng Dai is currently a professor of mathematics at the University of Alberta, and Yuan Xu is currently a professor of mathematics at the University of Oregon.
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography.This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
Feng Dai is currently a professor of mathematics at the University of Alberta, and Yuan Xu is currently a professor of mathematics at the University of Oregon.
1 Spherical Harmonics.- 2 Convolution and Spherical Harmonic Expansion.- 3 Littlewood-Paley Theory and Multiplier Theorem.- 4 Approximation on the Sphere.- 5 Weighted Polynomial Inequalities.- 6 Cubature Formulas on Spheres.- 7 Harmonic Analysis Associated to Reflection Groups.- 8 Boundedness of Projection Operator and Cesàro Means.- 9 Projection Operators and Cesàro Means in L^p Spaces.- 10 Weighted Best Approximation by Polynomials.- 11 Harmonic Analysis on the Unit Ball.- 12 Polynomial Approximation on the Unit Ball.- 13 Harmonic Analysis on the Simplex.- 14 Applications.- A Distance, Difference and Integral Formulas.- B Jacobi and Related Orthogonal Polynomials.- References.- Index.- Symbol Index.
Erscheint lt. Verlag | 17.4.2013 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics | Springer Monographs in Mathematics |
Zusatzinfo | XVIII, 440 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Technik | |
Schlagworte | analysis on the sphere • Approximation Theory • Harmonic Analysis • Littlewood-Paley theory • modulus of smoothness • multiplier theorem • Spherical Harmonics |
ISBN-10 | 1-4614-6660-1 / 1461466601 |
ISBN-13 | 978-1-4614-6660-4 / 9781461466604 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich