Monomial Ideals, Computations and Applications

Buch | Softcover
XI, 194 Seiten
2013
Springer Berlin (Verlag)
978-3-642-38741-8 (ISBN)
53,49 inkl. MwSt
This work covers three important aspects of monomials ideals in the three chapters "Stanley decompositions" by Jürgen Herzog, "Edge ideals" by Adam Van Tuyl and "Local cohomology" by Josep Álvarez Montaner. The chapters, written by top experts, include computer tutorials that emphasize the computational aspects of the respective areas. Monomial ideals and algebras are, in a sense, among the simplest structures in commutative algebra and the main objects of combinatorial commutative algebra. Also, they are of major importance for at least three reasons. Firstly, Gröbner basis theory allows us to treat certain problems on general polynomial ideals by means of monomial ideals. Secondly, the combinatorial structure of monomial ideals connects them to other combinatorial structures and allows us to solve problems on both sides of this correspondence using the techniques of each of the respective areas. And thirdly, the combinatorial nature of monomial ideals also makes them particularly well suited to the development of algorithms to work with them and then generate algorithms for more general structures.

A survey on Stanley depth.- Stanley decompositions using CoCoA.- A beginner's guide to edge and cover ideals.- Edge ideals using Macaulay2.- Local cohomology modules supported on monomial ideals.- Local Cohomology using Macaulay2.

Erscheint lt. Verlag 3.9.2013
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo XI, 194 p. 42 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 326 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Schlagworte 13-02,13C15,13D45,13F55 • Algebra • Computational aspects • Edge Ideals • Local cohomology • monomial ideals • Stanley depth
ISBN-10 3-642-38741-1 / 3642387411
ISBN-13 978-3-642-38741-8 / 9783642387418
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich