MuPAD Tutorial - Jürgen Gerhard, Walter Oevel

MuPAD Tutorial

Buch | Softcover
XII, 361 Seiten
2000
Springer Berlin (Verlag)
978-3-540-67546-4 (ISBN)
85,55 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book explains the basic use of the software package called MuPAD and gives an insight into the power of the system. M u PAD is a so-called computer algebra system, which is developed mainly at the University of Paderborn in Germany. This introduction addresses mathematicians, engineers, computer scientists, natural scientists, and more generally all those in need of mathematical computations for their education or their profession. Generally speaking, this book addresses anybody who wants to use the power of a modern computer algebra package. There are two ways to use a computer algebra system. On the one hand, you may use the mathematical knowledge it incorporates by calling system functions interactively. For example, you can compute symbolic integrals, or generate and invert matrices, by calling appro priate functions. They comprise the system's mathematical intelligence and may implement sophisticated algorithms. Chapters 2 through 15 discuss this way of using MuPAD. On the other hand, with the help of MuPAD's programming lan guage you can easily add functionality to the system by implementing your own algorithms as MuPAD procedures. This is useful for special purpose applications if no appropriate system functions exist. Chap ters 16 through 18 are an introduction to programming in MuPAD. You can now read this book in the standard way "linearly" from the first to the last page. However, there are reasons to proceed otherwise.

1.Introduction.- 1.1 Numerical Computation.- 1.2 Computer Algebra.- 1.3 Characteristics of Computer Algebra Systems.- 1.4 Existing Systems.- 1.5 MuPAD.- 2 First Steps in MuPAD.- 2.1 Explanations and Help.- 2.2 Computing with Numbers.- 2.3 Symbolic Computation.- 3 The MuPAD Libraries.- 3.1 Information About a Particular Library.- 3.2 Exporting Libraries.- 3.3 The Standard Library.- 4 MuPAD Objects.- 4.1 Operands: the Functions op and nops.- 4.2 Numbers.- 4.3 Identifiers.- 4.4 Symbolic Expressions.- 4.5 Sequences.- 4.6 Lists.- 4.7 Sets.- 4.8 Tables.- 4.9 Arrays.- 4.10 Boolean Expressions.- 4.11 Strings.- 4.12 Functions.- 4.13 Series Expansions.- 4.14 Algebraic Structures: Fields, Rings, etc.- 4.15 Vectors and Matrices.- 4.16 Polynomials.- 4.17 Null Objects: null(), NIL, FAIL, and undefined.- 5 Evaluation and Simplification.- 5.1 Identifiers and Their Values.- 5.2 Complete, Incomplete, and Enforced Evaluation.- 5.3 Automatic Simplification.- 6 Substitution: subs, subsex, and subsop.- 7 Differentiation and Integration.- 7.1 Differentiation.- 7.2 Integration.- 8 Solving Equations: solve.- 8.1 Polynomial Equations.- 8.2 General Equations.- 8.3 Differential and Recurrence Equations.- 8.4 solve in MuPAD Versions Beyond 1.4.- 9 Manipulating Expressions.- 9.1 Transforming Expressions.- 9.2 Simplifying Expressions.- 9.3 Assumptions About Symbolic Identifiers.- 10 Chance and Probability.- 11 Graphics.- 11.1 Graphs of Functions.- 11.2 Graphical Scenes.- 11.3 Curves.- 11.4 Surfaces.- 11.5 Further Possibilities.- 11.6 Printing and Saving Graphics.- 12 The History Mechanism.- 13 Input and Output.- 13.1 Output of Expressions.- 13.2 Reading and Writing Files.- 14 Utilities.- 14.1 User-Defined Preferences.- 14.2 Information on MuPAD Algorithms.- 14.3 Restarting a MuPAD Session.- 14.4 Executing Commands of the Operating System.- 15 Type Specifiers.- 15.1 The Functions type and testtype.- 15.2 Comfortable Type Checking: the Type Library.- 16 Loops.- 17 Branching: if-then-else and case.- 18 MuPAD Procedures.- 18.1 Defining Procedures.- 18.2 The Return Value of a Procedure.- 18.3 Returning Symbolic Function Calls.- 18.4 Local and Global Variables.- 18.5 Subprocedures.- 18.6 Type Declaration.- 18.7 Procedures with a Variable Number of Arguments.- 18.8 Options: the Remember Table.- 18.9 Input Parameters.- 18.10 Evaluation Within Procedures.- 18.11 Function Environments.- 18.12 A Programming Example: Differentiation.- 18.13 Programming Exercises.- Solutions to Exercises.- Documentation and References.

From the reviews of the second edition:

"The software package MuPAD is a computer algebra system that allows to solve computational problems in pure mathematics ... . The turotial explains the basic use of the system and gives insight into its power. ... Many examples and exercises illustrate how to use the system's functions, the graphics, and the programming language." (Zentralblatt für Didaktik der Mathematik, November, 2004)

Erscheint lt. Verlag 6.7.2000
Zusatzinfo XII, 361 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 504 g
Themenwelt Informatik Office Programme Outlook
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Schlagworte Computer Algebra • computer visualization • Mathematical and Computative Methods • Scientific Computing • Scientific Computing / Wissenschaftliches Rechnen • Symbolic Computing
ISBN-10 3-540-67546-9 / 3540675469
ISBN-13 978-3-540-67546-4 / 9783540675464
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich