Greedoids - Bernhard Korte, Laszlo Lovasz, Rainer Schrader

Greedoids

Buch | Softcover
VIII, 214 Seiten
2012 | 1. Softcover reprint of the original 1st ed. 1991
Springer Berlin (Verlag)
978-3-642-63499-4 (ISBN)
53,49 inkl. MwSt
Oh cieca cupidigia, oh ira folie, Che si ci sproni nella vita corta, E nell' eterna poi si mal c'immolle! o blind greediness and foolish rage, That in our fleeting life so goads us on And plunges us in boiling blood for ever! Dante, The Divine Comedy Inferno, XII, 17, 49/51. On an afternoon hike during the second Oberwolfach conference on Mathematical Programming in January 1981, two of the authors of this book discussed a paper by another two of the authors (Korte and Schrader [1981]) on approximation schemes for optimization problems over independence systems and matroids. They had noticed that in many proofs the hereditary property of independence systems and matroids is not needed: it is not required that every subset of a feasible set is again feasible. A much weaker property is sufficient, namely that every feasible set of cardinality k contains (at least) one feasible subset of cardinality k - 1. We called this property accessibility, and that was the starting point of our investigations on greedoids.

Bernhard Korte ist Professor an der Universität Bonn und leitet seit 1987 das Forschungsinstitut für Diskrete Mathematik in Bonn. Er befasst sich vor allem mit kombinatorischer Optimierung. Im von ihm gegründeten Arithmeum in Bonn sind eine Vielzahl historischer Rechenmaschinen zu sehen. Bernhard Korte war Alexander von Humboldt Fellow. 1997 erhielt er den Staatspreis des Landes Nordrhein-Westfalen und 2002 das Große Bundesverdienstkreuz. Des weiteren ist er Träger des großen Verdienstordens der Republik Italien und Honorarprofessor der Academia Sinica in Peking und der PUC (päpstliche katholische Universität) in Rio de Janeiro. Er ist Ehrendoktor an der Universität La Sapienza in Rohm und Mitglied der Nationalen Akademie der Wissenschaften Leopoldina in Halle an der Saale, der Nordrhein-Westfälischen Akademie der Wissenschaften und der Künste in Düsseldorf und der Deutschen Akademie der Technikwissenschaften (acatech).

I. Introduction.- 1. Set Systems and Languages.- 2. Graphs, Partially Ordered Sets and Lattices.- II. Abstract Linear Dependence - Matroids.- 1. Matroid Axiomatizations.- 2. Matroids and Optimization.- 3. Operations on Matroids.- 4. Submodular Functions and Polymatroids.- III. Abstract Convexity - Antimatroids.- 1. Convex Geometries and Shelling Processes.- 2. Examples of Antimatroids.- 3. Circuits and Paths.- 4. Helly's Theorem and Relatives.- 5. Ramsey-type Results.- 6. Representations of Antimatroids.- IV. General Exchange Structures - Greedoids.- 1. Basic Facts.- 2. Examples of Greedoids.- V. Structural Properties.- 1. Rank Function.- 2. Closure Operators.- 3. Rank and Closure Feasibility.- 4. Minors and Extensions.- 5. Interval Greedoids.- VI. Further Structural Properties.- 1. Lattices Associated with Greedoids.- 2. Connectivity in Greedoids.- VII. Local Poset Greedoids.- 1. Polymatroid Greedoids.- 2. Local Properties of Local Poset Greedoids.- 3. Excluded Minors for Local Posets.- 4. Paths in Local Poset Greedoids.- 5. Excluded Minors for Undirected Branchings Greedoids.- VIII. Greedoids on Partially Ordered Sets.- 1. Supermatroids.- 2. Ordered Geometries.- 3. Characterization of Ordered Geometries.- 4. Minimal and Maximal Ordered Geometries.- IX. Intersection, Slimming and Trimming.- 1. Intersections of Greedoids and Antimatroids.- 2. The Meet of a Matroid and an Antimatroid.- 3. Balanced Interval Greedoids.- 4. Exchange Systems and Gauss Greedoids.- X. Transposition Greedoids.- 1. The Transposition Property.- 2. Applications of the Transposition Property.- 3. Simplicial Elimination.- XI. Optimization in Greedoids.- 1. General Objective Functions.- 2. Linear Functions.- 3. Polyhedral Descriptions.- 4. Transversals and Partial Transversals.- 5.Intersection of Supermatroids.- XII. Topological Results for Greedoids.- 1. A Brief Review of Topological Prerequisites.- 2. Shellability of Greedoids and the Partial Tutte Polynomial.- 3. Homotopy Properties of Greedoids.- References.- Notation Index.- Author Index.- Inclusion Chart (inside the back cover).

Erscheint lt. Verlag 18.10.2012
Reihe/Serie Algorithms and Combinatorics
Zusatzinfo VIII, 214 p.
Verlagsort Berlin
Sprache englisch
Maße 170 x 242 mm
Gewicht 401 g
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
Schlagworte algorithms • Boundary element method • combinatorial optimization • combinatorics • Computer • Design • Discrete Mathematics • Function • Graphs • lattice • Mathematical Programming • Mathematics • Matroid • object • Optimization • Proof
ISBN-10 3-642-63499-0 / 3642634990
ISBN-13 978-3-642-63499-4 / 9783642634994
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices

von Volker Diekert; Manfred Kufleitner; Gerhard Rosenberger …

Buch | Softcover (2023)
De Gruyter (Verlag)
64,95