Introduction to Mathematical Analysis for Economic Theory and Econometrics -  Dean Corbae,  Maxwell Stinchcombe,  Juraj Zeman

Introduction to Mathematical Analysis for Economic Theory and Econometrics (eBook)

eBook Download: EPUB
2009
688 Seiten
Princeton University Press (Verlag)
978-1-4008-3308-5 (ISBN)
Systemvoraussetzungen
129,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory

Dean Corbae is the Rex A. and Dorothy B. Sebastian Centennial Professor in Business Administration at the University of Texas at Austin. Maxwell B. Stinchcombe is the E. C. McCarty Centennial Professor of Economics at the University of Texas at Austin. Juraj Zeman is researcher at the National Bank of Slovakia and lecturer in applied mathematics at Comenius University in Bratislava.

Zusatzinfo 55 line illus.
Verlagsort Princeton
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft Volkswirtschaftslehre Ökonometrie
Schlagworte Approximation • Axiom of choice • Banach space • bijection • bounded function • Budget set • Calculation • Cardinality • Cauchy Sequence • central limit theorem • combination • Compact space • complete metric space • concave function • conditional expectation • continuous function • Continuous function (set theory) • contraction mapping • Contradiction • Convex Analysis • convex set • Countable set • Dense set • Differentiable function • Dimension • Dimension (vector space) • Division by zero • Dynamic Programming • empty set • Equation • equivalence class • Estimator • existential quantification • Finite set • Fixed-point theorem • Function (mathematics) • Hahn–Banach Theorem • Independence (probability theory) • Indicator function • Inequality (mathematics) • Infimum and supremum • intermediate value theorem • Karush–Kuhn–Tucker conditions • law of large numbers • Lebesgue measure • Limit of a sequence • Limit superior and limit inferior • linear algebra • Linear Function • Linear map • Linear subspace • Loss Function • Markov Chain • Mathematical Optimization • Mathematics • Maximal element • Measurable function • Measure (mathematics) • Metric Space • Monotonic Function • normed vector space • Null set • Open set • optimization problem • Parameter • Pareto Efficiency • partially ordered set • Preference (economics) • Preference Relation • Probability • Probability Distribution • Probability space • Probability Theory • Quantity • Random Variable • Rational number • real number • scientific notation • Sequence • Set (mathematics) • Simple function • Special case • Stochastic process • Stone–Weierstrass theorem • subsequence • Subset • Summation • Surjective function • Theorem • Topological space • Topology • Uncountable set • uniform continuity • Uniform distribution (discrete) • Union (set theory) • Upper and lower bounds • Utility • Variable (mathematics) • Vector Space • Zorn's lemma
ISBN-10 1-4008-3308-6 / 1400833086
ISBN-13 978-1-4008-3308-5 / 9781400833085
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich