Introduction to Ring Theory
Seiten
1999
Springer London Ltd (Verlag)
978-1-85233-206-8 (ISBN)
Springer London Ltd (Verlag)
978-1-85233-206-8 (ISBN)
Most parts of algebra have undergone great changes and advances in recent years, perhaps none more so than ring theory. In this volume, Paul Cohn provides a clear and structured introduction to the subject.
After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product. Tensor product and rings of fractions, followed by a description of free rings. The reader is assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.
After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product. Tensor product and rings of fractions, followed by a description of free rings. The reader is assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.
Remarks on Notation and Terminology.- 1 Basics.- 2 Linear Algebras and Artinian Rings.- 3 Noetherian Rings.- 4 Ring Constructions.- 5 General Rings.- Outline Solutions.- Notations and Symbols.
Erscheint lt. Verlag | 8.6.2001 |
---|---|
Reihe/Serie | Springer Undergraduate Mathematics Series |
Zusatzinfo | X, 229 p. |
Verlagsort | England |
Sprache | englisch |
Maße | 178 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
ISBN-10 | 1-85233-206-9 / 1852332069 |
ISBN-13 | 978-1-85233-206-8 / 9781852332068 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €