Machine Learning and Interpretation in Neuroimaging

International Workshop, MLINI 2011, Held at NIPS 2011, Sierra Nevada, Spain, December 16-17, 2011, Revised Selected and Invited Contributions
Buch | Softcover
XIV, 266 Seiten
2012 | 2012
Springer Berlin (Verlag)
978-3-642-34712-2 (ISBN)

Lese- und Medienproben

Machine Learning and Interpretation in Neuroimaging -
49,22 inkl. MwSt
Brain imaging brings together the technology, methodology, research questions and approaches of a wide range of scientific fields including physics, statistics, computer science, neuroscience, biology, and engineering. Thus, methodological and technological advances that enable us to obtain measurements, examine relationships across observations, and link these data to neuroscientific hypotheses happen in a highly interdisciplinary environment. The dynamic field of machine learning with its modern approach to data mining provides many relevant approaches for neuroscience and enables the exploration of open questions. This state-of-the-art survey offers a collection of papers from the Workshop on Machine Learning and Interpretation in Neuroimaging, MLINI 2011, held at the 25th Annual Conference on Neural Information Processing, NIPS 2011, in the Sierra Nevada, Spain, in December 2011. Additionally, invited speakers agreed to contribute reviews on various aspects of the field, adding breadth and perspective to the volume. The 32 revised papers were carefully selected from 48 submissions. At the interface between machine learning and neuroimaging the papers aim at shedding some light on the state of the art in this interdisciplinary field. They are organized in topical sections on coding and decoding, neuroscience, dynamcis, connectivity, and probabilistic models and machine learning.

A Comparative Study of Algorithms for Intra- and Inter-subjects fMRI Decoding.- Beyond Brain Reading: Randomized Sparsity and Clustering to Simultaneously Predict and Identify.- Searchlight Based Feature Extraction.- Looking Outside the Searchlight.- Population Codes Representing Musical Timbre for High-Level fMRI Categorization of Music Genres.- Induction in Neuroscience with Classification: Issues and Solutions.- A New Feature Selection Method Based on Stability Theory - Exploring Parameters Space to Evaluate Classification Accuracy in Neuroimaging Data.- Identification of OCD-Relevant Brain Areas through Multivariate Feature Selection.- Deformation-Invariant Sparse Coding for Modeling Spatial Variability of Functional Patterns in the Brain.- Decoding Complex Cognitive States Online by Manifold Regularization in Real-Time fMRI.- Modality Neutral Techniques for Brain Image Understanding.- How Does the Brain Represent Visual Scenes? A Neuromagnetic Scene Categorization Study.- Finding Consistencies in MEG Responses to Repeated Natural Speech.- Categorized EEG Neurofeedback Performance Unveils Simultaneous fMRI Deep Brain Activation.- Predicting Clinically Definite Multiple Sclerosis from Onset Using SVM.- MKL-Based Sample Enrichment and Customized Outcomes Enable Smaller AD Clinical Trials.- Pairwise Analysis for Longitudinal fMRI Studies.- Non-separable Spatiotemporal Brain Hemodynamics Contain Neural Information.- The Dynamic Beamformer.- Covert Attention as a Paradigm for Subject-Independent Brain-Computer Interfacing.- The Neural Dynamics of Visual Processing in Monkey Extrastriate Cortex: A Comparison between Univariate and Multivariate Techniques.- Statistical Learning for Resting-State fMRI: Successes and Challenges.- Relating Brain Functional Connectivity to Anatomical Connections: Model Selection.- Information-Theoretic Connectivity-Based Cortex Parcellation.- Inferring Brain Networks through Graphical Models with Hidden Variables.- Pitfalls in EEG-BasedBrain Effective Connectivity Analysis.- Data-Driven Modeling of BOLD Drug Response Curves Using Gaussian Process Learning.- Variational Bayesian Learning of Sparse Representations and Its Application in Functional Neuroimaging.- Identification of Functional Clusters in the Striatum Using Infinite Relational Modeling.- A Latent Feature Analysis of the Neural Representation of Conceptual Knowledge.- Real-Time Functional MRI Classification of Brain States Using Markov-SVM Hybrid Models: Peering Inside the rt-fMRI Black Box.- Restoring the Generalizability of SVM Based Decoding in High Dimensional Neuroimage Data.

Erscheint lt. Verlag 7.11.2012
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo XIV, 266 p. 83 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 433 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte classification • Data Mining • fMRI • Kernresonanztomographie • Maschinelles Lernen • Multivariate Analyse • multivariate encoding • multivariate pattern analysis (MVPA) • Mustererkennung
ISBN-10 3-642-34712-6 / 3642347126
ISBN-13 978-3-642-34712-2 / 9783642347122
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90