Fourier Series with Respect to General Orthogonal Systems
Springer Berlin (Verlag)
978-3-642-66058-0 (ISBN)
Terminology. Preliminary Information.- I. Convergence of Fourier Series in the Classical Sense. Lebesgue Functions of Bounded Systems.-
1. The Fundamental Inequality.-
2. The Logarithmic Growth of the Lebesgue Functions. Divergence of Fourier Series.-
3. Series with Decreasing Coefficients.-
4. Generalizations, Counterexamples, Problems.-
5. The Stability of the Orthogonalization Operator.- II. Convergence Almost Everywhere; Conditions on the Coefficients.-
1. The Class S?.-
2. Garsia's Theorem.-
3. The Coefficients of Convergent Series in Complete Systems.-
4. Extension of a System of Functions to an ONS.- III. Properties of Complete Systems; the Role of the Haar System.-
1. The Basic Construction.-
2. Divergent Fourier Series.- 3. Bases in Function Spaces and Majorants of Fourier Series.-
4. Fourier Coefficients of Continuous Functions.-
5. Some More Results about the Haar System.- IV. Series from L2 and Peculiarities of Fourier Series from the Spaces Lp.-
1. The Matrices Ak.-
2. Lebesgue Functions and Convergence Almost Everywhere.-
3. Convergence of Fourier Series of Functions from Various Classes.-
4. Sums of Fourier Series.-
5. Conditional Bases in Hubert Space.
Erscheint lt. Verlag | 15.11.2011 |
---|---|
Reihe/Serie | Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge |
Übersetzer | B.P. Marshall, H.J. Christoffers |
Zusatzinfo | X, 138 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 274 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Schlagworte | Fourier • Fourierreihe • matrix theory • Orthogonalsystem • Orthogonal Systems |
ISBN-10 | 3-642-66058-4 / 3642660584 |
ISBN-13 | 978-3-642-66058-0 / 9783642660580 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich