Field Theory Concepts - Adolf J. Schwab

Field Theory Concepts

Electromagnetic Fields. Maxwell’s Equations grad, curl, div. etc. Finite-Element Method. Finite-Difference Method. Charge Simulation Method. Monte Carlo Method

(Autor)

Buch | Softcover
XVI, 218 Seiten
2012 | 1. Softcover reprint of the original 1st ed. 1988
Springer Berlin (Verlag)
978-3-642-48943-3 (ISBN)
53,49 inkl. MwSt
"Field Theory Concepts" is a new approach to the teachingand understanding of field theory. Exploiting formal analo-gies of electric, magnetic, and conduction fields andintroducing generic concepts results in a transparentlystructured electomagnetic field theory. Highly illustrativeterms alloweasyaccess to the concepts of curl and div whichgenerally are conceptually demanding. Emphasis is placed onthe static, quasistatic and dynamic nature of fields.Eventually, numerical field calculation algorithms, e.g.Finite Element method and Monte Carlo method, are presentedin a concise yet illustrative manner.

Prof. Dr. ADOLF JOSEF SCHWAB studierte und promovierte an der Elite-Universität Karlsruhe auf dem Gebiet der Elektrotechnik. Seinem Aufenthalt als Postdoctoral Fellow am MIT in den USA folgte 1972 die Habilitation. 1976 erhielt er einen Ruf als Professor an die Universität Darmstadt, 1978 an die Universität Dortmund. Im Jahre 1980 wurde er zum Ordentlichen Professor und Direktor des Instituts für Elektroenergiesysteme und Hochspannungstechnik an der Elite-Universität Karlsruhe ernannt. Von 1989 bis 1993 leitete er das ABB Konzernforschungszentrum in Heidelberg. Heute ist Prof. Schwab Ordinarius im Ruhestand und leitet die Prof. Schwab Consulting und Partner.

1 Elementary Concepts of Electric and Magnetic Fields.- 1.1 Flux and Flux Density of Vector Fields.- 1.2 Equations of Matter - Constitutive Relations.- 2 Types of Vector Fields.- 2.1 Electric Source Fields.- 2.2 Electric and Magnetic Vortex Fields.- 2.3 General Vector Fields.- 3 Field Theory Equations.- 3.1 Integral Form of Maxwells Equations.- 3.2 Law of Continuity in Integral Form Source Strength of Current Density Fields.- 3.3 Differential Form of Maxwell's Equations.- 3.4 Law of Continuity in Differential Form Source Density of Current Density Fields.- 3.5 Maxwell's Equations in Complex Notation.- 3.6 Integral Theorems of Stokes and Gauss.- 3.7 Network Model of Induction.- 4 Gradient, Potential, Potential Function.- 4.1 Gradient of a Scalar Field.- 4.2 Potential and Potential Function of Static Electric Fields.- 4.3 Development of the Potential Function from a Given Charge Distribution.- 4.4 Potential Equations.- 4.5 Electric Vector Potential.- 4.6 Vector Potential of the Conduction Field.- 5 Potential and Potential Function of Magnetostatic Fields.- 5.1 Magnetic Scalar Potential.- 5.2 Potential Equation for Magnetic Scalar Potentials.- 5.3 Magnetic Vector Potential.- 5.4 Potential Equation for Magnetic Vector Potentials.- 6 Classification of Electric and Magnetic Fields.- 6.1 Stationary Fields.- 6.2 Quasi-Stationary Fields (Steady-State) Fields.- 6.3 Nonstationary Fields, Electromagnetic Waves.- 7 Transmission-Line Equations.- 8 Typical Differential Equations of Electrodynamics and Mathematical Physics.- 8.1 Generalized Telegraphist's Equation.- 8.2 Telegraphist's Equation with a, b>0; c=0.- 8.3 Telegraphist's Equation with a>0; b=0; c=0.- 8.4 Telegraphist's Equation with b>0; a=0; c=0.- 8.5 Helmholtz Equation.- 8.6 Schroedinger Equation.- 8.7Lorentz's Invariance of Maxwell's Equations.- 9 Numerical Calculation of Potential Fields.- 9.1 Finite-Element Method.- 9.2 Finite-Difference Method.- 9.3 Charge Simulation Method.- 9.4 Monte Carlo Method.- 9.5 General Remarks on Numerical Field Calculation.- A1 Units.- A2 Scalar and Vector Integrals.- A3 Vector Operations in Special Coordinate Systems.- A5 Complex Notation of Harmonic Quantities.- Literature.

Erscheint lt. Verlag 14.4.2012
Zusatzinfo XVI, 218 p.
Verlagsort Berlin
Sprache englisch
Maße 170 x 244 mm
Gewicht 414 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Technik Elektrotechnik / Energietechnik
Schlagworte electrodynamics • electromagnetic wave • Finite Element Method • Maxwell • Model • Network • Potential • Simulation • Telegraph • Transmission
ISBN-10 3-642-48943-5 / 3642489435
ISBN-13 978-3-642-48943-3 / 9783642489433
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich